首页|一种基于轻量化神经网络的调制识别方法

一种基于轻量化神经网络的调制识别方法

扫码查看
近年来,将深度学习应用于调制识别领域是个热门方向,但为了提高识别精度,不断复杂化的网络结构给硬件设备带来巨大压力,提出将MobileNetV2网络应用于调制识别的方法.首先生成11种调制信号的数据集,再利用MobileNetV2网络进行调制识别模型的训练,最后通过全连接层进行11种调制识别的分类输出.实验表明,Mo-bileNetV2的识别率达到95%以上,相较于实验对比的2种卷积网络提高5%左右,且网络参数总量大大降低,训练时间也有所控制,降低了对硬件设备的需求.此方法对后续轻量化深度学习网络在调制识别中的应用有研究价值与意义.
A Modulation Recognition Method Based on Lightweight Neural Networks
In recent years,the application of deep learning to the field of modulation recognition is a popular direction,but the constantly complex network structure puts great pressure on the hard-ware equipment for raising the recognition accuracy.This paper proposes a method using Mobile-NetV2 network in modulation recognition.Firstly,the dataset of 11 kinds of modulation signals is generated,then MobileNetV2 network is used to train the modulation recognition model,and final-ly the classification output of 11 kinds of modulation recognition is performed through the fully connected layer.The experiment shows that the recognition rate of MobileNetV2 reaches more than 95%,which is about 5%higher than that of the two convolutional networks in the experimen-tal comparison,and the number of network parameters is greatly reduced,as well as the training time is controlled,which reduces the requirements to hardware devices.This method has research value and significance for the subsequent application of lightweight deep learning networks to mod-ulation recognition.

lightweight neural networksdeep learningmodulation recognition

孙申宇、陆志宏、宋新超

展开 >

中国船舶集团有限公司第七二三研究所,江苏扬州 225101

轻量级神经网络 深度学习 调制识别

2024

舰船电子对抗
中国船舶重工集团公司第723研究所

舰船电子对抗

影响因子:0.213
ISSN:1673-9167
年,卷(期):2024.47(2)
  • 4