首页|基于BP神经网络的雷达信号载波频率测量

基于BP神经网络的雷达信号载波频率测量

扫码查看
现代电子战争中常通过电子侦察的方式获取敌方雷达的各种信息,雷达信号的载波频率是后续进行辐射源识别、干扰和抗干扰的一个重要参数.鉴于神经网络对数据优异的多维函数表征能力,设计了一种架构简单的基于神经网络的雷达信号载波频率快速测量方法.首先对含有噪声的雷达信号进行采样,对采样得到的每个信号的频率进行标注,预处理获得信号样本数据集.然后将数据集划分为训练集和测试集合,输入到BP神经网络中进行频率拟合.最后,向训练所得的网络模型输入射频采样得到的时域信号,网络输出信号瞬时频率值.在输入信号频率范围为0.2-2.6 GHz,信噪比为30 dB的条件下,对该网络进行多次随机重复测试,实验结果显示输入信号频率估计值均方根误差优于5 MHz.
Radar Signal Carrier Frequency Measurement Based on BP Neural Network
In modern electronic warfare,various information of enemy radars is often obtained through electronic reconnaissance.The carrier frequency of radar signals are important parameters for subsequent radiation source identification,interference and anti-interference.In view of the ex-cellent multi-dimensional function representation ability of neural networks to data,a simple neural network-based fast measurement method of radar signal carrier frequency is designed.Firstly,the radar signal containing noise is sampled,the frequency of each sampled signal is annotated,and the signal sample datasets are obtained by preprocessing.Then the datasets are divided into training set and testing set,and they are input into the BP neural network for frequency fitting.Finally,the time-domain signals obtained by radio frequency sampling are input to the trained network model,and the the instantaneous frequency value of the signals are output though network.Under the con-ditions that the input signal frequency range is 0.2~2.6 GHz and the signal noise ratio is 30 dB,random tests are imposed on the network repeatedly for several times.The experimental results show that the root-mean-square error of the input signal frequency estimation is better than 5 MHz.

BP neural networkcarrier frequency measurementradar signal

付豪、孙恒、赵忠凯

展开 >

哈尔滨工程大学,黑龙江 哈尔滨 150001

北京航天长征飞行器研究所,北京 100076

BP神经网络 载波频率测量 雷达信号

2024

舰船电子对抗
中国船舶重工集团公司第723研究所

舰船电子对抗

影响因子:0.213
ISSN:1673-9167
年,卷(期):2024.47(2)
  • 12