首页|一种基于TCN的单通道语音分离算法

一种基于TCN的单通道语音分离算法

扫码查看
针对端到端的语音分离中编码器模块仅仅使用一层的卷积神经网络,无法提取出语音信号更深层次的特征的问题,提出了基于时间卷积网络(TCN)的端到端的单通道语音分离,TCN有灵活的感受野,能够输入可变的序列,占用内存少,梯度稳定.利用中英文数据集对提出的基于TCN网络的端到端的单通道语音分离算法进行仿真实验,实验结果表明,与TasNet模型相比,所提算法的分离结果有所提升.
A Single Channel Speech Separation Algorithm Based on TCN Network
The encoder module of the end-to-end speech separation only uses a layer of convolutional neural network,which cannot extract the deeper features of the speech signal.An end-to-end sin-gle-channel speech separation based on the temporal convolutional network(TCN)is proposed in this paper.The TCN has flexible receptive field,can input variable sequences,occupies less memo-ry,and has stable gradient.The Chinese and English data sets are used to simulate the proposed end-to-end single-channel speech separation algorithm based on the TCN.The experimental results show that the proposed algorithm has improved separation results compared with the TasNet mod-el.

single channelspeech separationdeep learningsource-to-distortion ratiosource-to-ar-tifact ratiosource-to-interference ratio

温国伟、刘金鹏、方剑

展开 >

中国船舶集团有限公司第七二三研究所,江苏扬州 225101

单通道 语音分离 深度学习 信号失真比 信号伪影比 信号干扰比

2024

舰船电子对抗
中国船舶重工集团公司第723研究所

舰船电子对抗

影响因子:0.213
ISSN:1673-9167
年,卷(期):2024.47(2)
  • 17