首页|基于码流分离与统计的小区用户行为模式识别

基于码流分离与统计的小区用户行为模式识别

扫码查看
对移动通信小区用户的侦察与管控是保证电磁空间安全和正常通信秩序的必要手段.针对目前面向第5代(5G)移动通信侦察无法在用户级别进行精准分析的现状,提出了基于码流分离和统计的小区用户行为模式识别方法.通过通信侦察处理,不仅能够获得基础的系统信令信息,还可以截获、分析用户级别特定的信令与身份信息.根据用户的身份信息和控制信息,通过解调、解扰、解码得到终端的上下行业务码流,并从统计角度获得其流量图.在此基础上,利用深度学习模型进行迁移学习,识别其行为是通话、短信还是上网,从统计学意义上完成小区用户的行为模式识别.经过实际侦察实验验证,识别正确率达到了 87.50%,为移动通信用户的精准侦察与管控相关研究奠定了重要基础.
Cell User Behavior Pattern Recognition Based on Code Stream Separation and Statistics
The reconnaissance and control of mobile communication cell user is a necessary means to ensure the safety of electromagnetic space and normal communication order.In view of the current situation that 5th generation(5G)mobile communication reconnaissance cannot be accurately ana-lyzed at the user level,a cell user behavior pattern recognition method based on code stream separa-tion and statistics is proposed.Through communication reconnaissance processing,not only the basic system signaling information can be obtained,but also user's specific signaling and identity information can be intercepted and analyzed.According to the identity and control information of the users,the upstream and downstream service code stream of the terminal are gained after de-modulating,descrambling and decoding.And the flow graph of the terminal can be further obtained from a statistical perspective.On this basis,the deep learning model is used to carry out transfer learning to identify its behavior as voice,short message or data.The behavior pattern recognition of cell users is statistically completed,and the recognition accuracy rate reaches 87.50%through ac-tual reconnaissance experiments validation,which lays an important foundation for the research in-to accurate reconnaissance and control of mobile communication user.

mobile communication reconnaissanceuser code stream separationbehavior pattern recognitiondeep learningtransfer learningflow graph

陈俊豪、石荣、邓科

展开 >

电子信息控制重点实验室,四川成都 610036

移动通信侦察 用户码流分离 行为模式识别 深度学习 迁移学习 流量图

2024

舰船电子对抗
中国船舶重工集团公司第723研究所

舰船电子对抗

影响因子:0.213
ISSN:1673-9167
年,卷(期):2024.47(2)
  • 15