首页|基于多维特征融合的海面目标检测

基于多维特征融合的海面目标检测

扫码查看
为提高海面目标的检测概率,提出一种多维特征融合的目标检测方法.首先,在时域的基础上,提取赫斯特(Hurst)指数和信息熵(IE)2种特征.其次,在频域的基础上,提取频域方差与均值比(FVAR)作为特征.然后,在时频域的基础上,提取短时傅里叶变换(STFT)后的时频图作为特征.最后,使用2支改进的卷积神经网络(CNN)分别训练一维特征和二维特征,之后联合2支网络,得到最终的目标检测结果.进一步与传统卷积神经网络作对比,结果显示在相同训练条件下,所提方法的计算时间缩短40%以上.
Sea Surface Target Detection Based on Multi-dimensional Feature Fusion
To improve the detection probability of sea surface targets,a multi-dimensional feature fusion method for target detection is proposed.Firstly,based on the time domain,two features:Hurst exponent and information entropy(IE)are extracted.Secondly,based on the frequency do-main,the frequency variance to average ratio(FVAR)is extracted as a feature.Then,based on the time-frequency domain,the time-frequency map after short time fourier transform(STFT)is ex-tracted as the feature.Finally,two improved convolutional neural networks(CNNs)are used to train one-dimensional and two-dimensional features respectively.The two networks are then com-bined to obtain the final target detection result.Further comparison with traditional convolutional neural networks shows that the proposed method reduces computation time by more than 40%un-der the same training conditions.

sea cluttertarget detectionfeature fusion

黄胜彬、潘大鹏、陈涛

展开 >

哈尔滨工程大学,黑龙江哈尔滨 150001

海杂波 目标检测 特征融合

2024

舰船电子对抗
中国船舶重工集团公司第723研究所

舰船电子对抗

影响因子:0.213
ISSN:1673-9167
年,卷(期):2024.47(3)