首页|面向战斗力指数计算的BP神经网络设计研究

面向战斗力指数计算的BP神经网络设计研究

扫码查看
战斗力指数的定量化研究对军队信息化建设至关重要.针对当前战斗力指数研究方法存在受主观因素影响较大、定性分析较多、定量研究较少、方法泛化性不足等缺点,重申了以BP神经网络为"黑盒模型"计算战斗力指数这一方法的重要性和可行性.该方法以对战斗力指数影响的指标为输入,以战斗力指数的量值为输出,通过误差反向传递与梯度下降的训练方法自动学习输出与输入之间的复杂函数关系.此外,针对当前涉及BP神经网络结构优化研究较少、所用BP神经网络结构简单、性能及稳定性无法保证等问题,提出了一套行之有效BP神经网络的优化方法.该方法通过优化神经元数量、隐藏层数、训练方法3种手段优化BP神经网络.仿真实验结果表明:3种优化方法均可提升BP神经网络性能,同种优化方法的最佳模型分别比其他模型的平均预测误差低约4%、7%、6%.
Research on The Design of BP Neural Network for Calculating Combat Effectiveness Index
The quantitative study of combat effectiveness index is crucial for the informationization construction of the military.In response to the shortcomings of the current research method for combat effectiveness index,such as being greatly influenced by subjective factors,more qualitative analysis,less quantitative research,insufficient method generalization,etc.the importance and feasi-bility of using BP neural network as the"black-box model"to calculate the combat effectiveness index are reiterated.This method takes the indicators that affect the combat effectiveness index as input and the values of the combat effectiveness index as output,through the training method of er-ror back-propagation and gradient descent,automatically learns the complex function relationship between output and input.In addition,a set of effective optimization methods for BP neural net-works is proposed to address the current issues such as limited research on BP neural network structure optimization,simple structure of BP neural network,and inability to guarantee the per-formance and stability.This method optimizes the BP neural network through three approaches:optimizing the number of neurons,hiding layers and training methods.Simulation experiments show that all three optimization methods can improve the performance of BP neural network.The average prediction error of the best model with the same optimization method is about 4%,7%and 6%lower than that of other models respectively.

combat effectiveness indexquantitative analysisback propagation neural networkim-pact indicators

郭恩泽、何斌斌、武艺楠、邹永杰、孙健、郭蓓蓓

展开 >

解放军63893部队,河南 洛阳 471003

解放军63896部队,河南 洛阳 471003

战斗力指数 定量分析 BP神经网络 影响指标

2024

舰船电子对抗
中国船舶重工集团公司第723研究所

舰船电子对抗

影响因子:0.213
ISSN:1673-9167
年,卷(期):2024.47(4)