首页|基于天牛须优化的K-Means算法在雷达信号分选中的应用

基于天牛须优化的K-Means算法在雷达信号分选中的应用

扫码查看
雷达信号分选就是将错综复杂的雷达信号分选出来,它是雷达辐射源识别的重要基础.最近发生的俄乌冲突也在不断验证着电子战的重要性,雷达信号分选作为电子战的关键一环,发挥着至关重要的作用.提出了一种基于蚁群LF聚类、天牛须搜索(BAS)和K-Means聚类的融合分选算法,该算法不需要雷达信号的先验知识.仿真实验表明,该方法可以准确地将复杂的雷达信号进行分类,分选正确率较高.
Application of K-Means Algorithm Based on Bettle Antennae Optimization to Radar Signal Sorting
Radar signal sorting is to sort out complex radar signals,which is an important basis for radar radiation source recognition.The recent conflict between Russia and Ukraine has also proved the importance of electronic warfare.As a key part of electronic warfare,radar signal sorting plays an important role.A fusion sorting algorithm based on Lumer and Faieta(LF)clustering of ant colony,beetle antennae search(BAS)and K-Means clustering is proposed,which does not need pri-or knowledge of the radar signal.Simulation experiments show that this method can classify com-plex radar signals accurately and has a high sorting accuracy.

radar signal sortingbeetle antennae searchK-Means clusteringLumer and Faieta(LF)clustering

赵贵喜、郑洪涛、张冀

展开 >

解放军93199部队,黑龙江哈尔滨 150001

雷达信号分选 天牛须搜索 K-Means聚类 LF聚类

2024

舰船电子对抗
中国船舶重工集团公司第723研究所

舰船电子对抗

影响因子:0.213
ISSN:1673-9167
年,卷(期):2024.47(6)