首页|基于注意力机制的调制识别算法研究

基于注意力机制的调制识别算法研究

扫码查看
在当代通信技术中,调制识别占据着至关重要的地位,特别是在非合作性通信场景下,其重要性尤为显著.将深度学习应用于调制识别成为研究热点,随着对深度学习的深入研究,对网络性能的优化来提高调制识别准确率成为难点.选择AlexNet网络作为基准网络,提出一种改进的挤压和激励(SE)模块,将通道的绝对重要性和相对重要性都纳入考量,再通过激励实现对通道重要性的重标定,提高对局部重要信息的捕捉能力.利用该网络对11种信号调制类型进行识别,相较于未添加模块的网络,准确率提高4%左右,总体识别率达到86%左右,计算量大大降低.实验证明了改进通道注意力模块对网络性能的优化作用.此方法对后续基于注意力机制的深度学习网络在调制识别中的应用有研究价值与意义.
Research into Modulation Recognition Algorithm Based on Attention Mechanism
In contemporary communication technology,modulation identification occupies a crucial position.Especially in non-cooperative communication scenarios,its importance is particularly sig-nificant.Applying deep learning to modulation identification has become a research hotspot,and with the in-depth study of deep learning,it becomes difficult to improve the accuracy of modulation identification through optimizing the network performance.This paper chooses AlexNet network as the benchmark network,and proposes an improved squeeze and excition(SE)module,which takes both the absolute and relative importance of the channel into account,and then realizes the re-cali-bration of the channel importance through the excitation,improves the ability of capturing locally important information.Using this network to identify eleven signal modulation types,the accuracy is improved by about 4%compared to the network without the added module,and the overall iden-tification rate reaches about 86%,meanwhile the amount of calculation is greatly reduced.The ex-periments confirm the optimization effect of the improved channel attention module on the network performance.This method has research value and significance for the subsequent application of deep learning networks based on the attention mechanism in modulation recognition.

attention mechanismdeep learningmodulation recognition

孙申宇、陆志宏、宋新超

展开 >

中国船舶集团有限公司第七二三研究所,江苏扬州 225101

注意力机制 深度学习 调制识别

2024

舰船电子对抗
中国船舶重工集团公司第723研究所

舰船电子对抗

影响因子:0.213
ISSN:1673-9167
年,卷(期):2024.47(6)