舰船电子工程2024,Vol.44Issue(2) :35-39.DOI:10.3969/j.issn.1672-9730.2024.02.008

基于改进PSO-KMeans煤炭异物筛选算法研究

Research on Foreign Matter Screening Algorithm in Coal Based on Improved PSO-KMeans

朱名乾 刘宾
舰船电子工程2024,Vol.44Issue(2) :35-39.DOI:10.3969/j.issn.1672-9730.2024.02.008

基于改进PSO-KMeans煤炭异物筛选算法研究

Research on Foreign Matter Screening Algorithm in Coal Based on Improved PSO-KMeans

朱名乾 1刘宾1
扫码查看

作者信息

  • 1. 中北大学信息与通信工程学院 太原 030051
  • 折叠

摘要

采煤过程中异物自动识别和分拣是实现矿业信息化的关键技术之一.传统双能X射线系统根据R值算法可有效识别出煤炭中混杂的钢筋与胶皮,却难以识别与煤炭组成成分相似的木质杂质.针对这一问题,提出基于L0范数最小化与改进PSO-KMeans的木质杂质筛选算法,借助L0范数最小化算法平滑图像,去除煤灰干扰,利用改进PSO-KMeans聚类算法与基于距离变换的分水岭算法实现图像分割,根据离心率与矩形度进行木质杂质识别,并通过仿真实验验证方法的可行性.经验证此方法能有效筛选出煤炭中混杂的木质杂质.

Abstract

Automatic identification and sorting of foreign matters are key technologies to realize mining informatization.The traditional dual energy X-ray system can effectively identify the mixed iron and rubber by R-value algorithm.But it is difficult to identify the wooden impurities similar to coal.To solve the problem,a wooden impurities screening algorithm based on L0 norm mini-mization and improved PSO-KMeans is proposed.The image is smoothed by L0 norm minimization to remove coal ash.And it can be segmented by improved PSO-KMeans algorithm and watershed algorithm based on distance transformation.Later,wooden impuri-ties can be identified according to eccentricity and squareness.With simulation experiment,it is verified that this method can effec-tively screen out the mixed wooden impurities in coal.

关键词

L0范数最小化算法/粒子群优化算法/K均值聚类算法/分水岭算法

Key words

L0 norm minimization algorithm/particle swarm optimization/K-means clustering algorithm/watershed algorithm

引用本文复制引用

基金项目

国家自然基金青年基金项目(62201520)

出版年

2024
舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
参考文献量13
段落导航相关论文