首页|基于改进PSO-KMeans煤炭异物筛选算法研究

基于改进PSO-KMeans煤炭异物筛选算法研究

扫码查看
采煤过程中异物自动识别和分拣是实现矿业信息化的关键技术之一。传统双能X射线系统根据R值算法可有效识别出煤炭中混杂的钢筋与胶皮,却难以识别与煤炭组成成分相似的木质杂质。针对这一问题,提出基于L0范数最小化与改进PSO-KMeans的木质杂质筛选算法,借助L0范数最小化算法平滑图像,去除煤灰干扰,利用改进PSO-KMeans聚类算法与基于距离变换的分水岭算法实现图像分割,根据离心率与矩形度进行木质杂质识别,并通过仿真实验验证方法的可行性。经验证此方法能有效筛选出煤炭中混杂的木质杂质。
Research on Foreign Matter Screening Algorithm in Coal Based on Improved PSO-KMeans
Automatic identification and sorting of foreign matters are key technologies to realize mining informatization.The traditional dual energy X-ray system can effectively identify the mixed iron and rubber by R-value algorithm.But it is difficult to identify the wooden impurities similar to coal.To solve the problem,a wooden impurities screening algorithm based on L0 norm mini-mization and improved PSO-KMeans is proposed.The image is smoothed by L0 norm minimization to remove coal ash.And it can be segmented by improved PSO-KMeans algorithm and watershed algorithm based on distance transformation.Later,wooden impuri-ties can be identified according to eccentricity and squareness.With simulation experiment,it is verified that this method can effec-tively screen out the mixed wooden impurities in coal.

L0 norm minimization algorithmparticle swarm optimizationK-means clustering algorithmwatershed algorithm

朱名乾、刘宾

展开 >

中北大学信息与通信工程学院 太原 030051

L0范数最小化算法 粒子群优化算法 K均值聚类算法 分水岭算法

国家自然基金青年基金项目

62201520

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(2)
  • 13