舰船电子工程2024,Vol.44Issue(2) :133-137,204.DOI:10.3969/j.issn.1672-9730.2024.02.028

基于MobileNet-V2迁移学习的异常流量检测方法

Abnormal Traffic Detection Method Based on MobileNet-V2 Migration Learning

陈庚
舰船电子工程2024,Vol.44Issue(2) :133-137,204.DOI:10.3969/j.issn.1672-9730.2024.02.028

基于MobileNet-V2迁移学习的异常流量检测方法

Abnormal Traffic Detection Method Based on MobileNet-V2 Migration Learning

陈庚1
扫码查看

作者信息

  • 1. 西安工程大学计算机科学学院 西安 710048
  • 折叠

摘要

针对越来越多的不同种类恶意流量给网络安全带来的巨大隐患,构建大规模机器学习系统复杂、昂贵和现今国内特定场景下快速搭建模型的研究较少的问题,论文提出了一种基于MobileNet-V2模型,采用迁移学习技术快速搭建异常流量检测模型的方法.首先,利用迁移学习的方式,基于MobileNet-V2模型,采用三通道变换与零填充等方式构建异常流量模型,使其符合实际流量异常检测分类的应用场景.其次,数据集采用USTC-TFC2016公开流量数据集,通过预处理将其转换为类似二维图片的数据格式,输入构建的模型中进行训练与测试.实验结果表明,该模型具有良好的检测性能,在精确度、查准率、查全率、F1分数等主要性能指标上均有很好的表现,可为防火墙等其他嵌入式设备提供一个高效的流量检测方案.

Abstract

In view of the huge hidden dangers brought by more and more different types of malicious traffic to network securi-ty,building large-scale machine learning systems is complex and expensive,and there is less research on how to quickly build mod-els in specific scenarios in China.This paper proposes a method based on MobileNet-V2 model,which uses migration learning tech-nology to quickly build an abnormal traffic detection model.First,based on the MobileNet-V2 model,the abnormal traffic model is constructed by means of three-channel transformation and zero filling using the method of transfer learning,so as to make it conform to the application scenario of actual traffic anomaly detection and classification.Secondly,the data set adopts the USTC-TFC2016 public traffic data set,converts it into a data format similar to two-dimensional pictures through preprocessing,and inputs it into the built model for training and testing.The experimental results show that the model has good detection performance,and performs well in accuracy,precision,recall,F1 score and other main performance indicators.It can provide an efficient traffic detection scheme for other embedded devices such as firewalls.

关键词

异常流量检测/迁移学习/MobileNet-V2/USTC-TFC2016

Key words

abnormal traffic detection/transfer learning/MobileNet-V2/USTC-TFC2016

引用本文复制引用

出版年

2024
舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
参考文献量37
段落导航相关论文