首页|基于SSA-BP的通信设备故障检测

基于SSA-BP的通信设备故障检测

扫码查看
BP神经网络是故障检测的常用方法,但是在装备故障诊断的运用中,其很难快速有效地获得正确数量的网络层和神经元,而且学习速度较慢,导致检测效率低、稳定性差。为提高某型通信设备的故障诊断效能,论文在以BP神经网络作为诊断算法的基础上,引入麻雀搜索算法(SSA)这种新型优化算法改进BP神经网络参数的选取,优化参数设置,提高检测速度。相关改进算法运用于某型通信设备故障检测,与传统的BP神经网络算法相对比,采用麻雀搜索优化的BP神经网络故障检测算法在诊断效能方面优势明显,为开展装备维护,提供了很好的指导作用,也为后续相关诊断软件平台的开展提供了算法基础。
Communication Equipment Fault Diagnosis Based on SSA-BP
In the communication equipment fault diagnosis,BP neural network is usually used.But it struggles to swiftly and efficiently obtain the right number of network layers and neurons,as well as having a slow learning rate,which leads to low detec-tion efficiency and poor stability.In order to improve the fault diagnosis efficiency of a certain type of communication equipment,this paper introduces a new optimization algorithm-Sparrow Search Algorithm(SSA)to improve the selection of BP neural network pa-rameters,optimize the parameter settings,and improve the detection speed on the basis of BP neural network as the diagnostic algo-rithm.On contrast with the traditional BP neural network algorithm,the BP neural network fault detection based on sparrow search algorithm has obvious advantages in diagnosis efficiency,which provides a good guidance for further equipment maintenance and provides an algorithm basis for the development of subsequent relevant diagnosis software platform.

fault diagnosissparrow search algorithmcommunication equipmentequipment safetyparameter optimiza-tionneuron data classificationBP neural network

姜峰、鞠建波

展开 >

海军航空大学 烟台 264000

故障诊断 麻雀搜索算法 通信设备 设备安全 参数优化 神经元 数据分类 BP神经网络

军队科研专项国家自然科学基金项目

4151232260874112

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(2)
  • 15