首页|基于CNN-GRU的阻拦装置受阻对象撞索速度软测量

基于CNN-GRU的阻拦装置受阻对象撞索速度软测量

扫码查看
阻拦装置作为受阻对象安全拦停的重要保障,无法实时获取受阻对象撞索速度。针对该问题,提出了新的CNN-GRU软测量模型。首先,针对阻拦装置的数据特点将序列扩充为三维矩阵;然后,将通道注意力机制与残差模块结合,用于挖掘序列特征、降低数据维度;最后,将提取的特征重新转换为序列并通过门控循环单元推理受阻对象撞索速度。实验证明,该方法在阻拦装置受阻对象撞索速度软测量中具有较高的准确率。
Soft-sensing of Cable Collision Speed of Obstructed Object of Blocking Device Based on CNN-GRU
As an important guarantee for the safe stopping of the blocked object,the blocking device cannot obtain the speed of the rope collision of the blocked object in real time.To solve this problem,a new CNN-GRU soft sensor model is proposed.First-ly,according to the data characteristics of the blocking device,the sequence is expanded into a three-dimensional matrix.Then,the channel attention mechanism is combined with the residual module to mine the sequence features and reduce the data dimen-sion.Finally,the extracted features are re-converted into sequences and the collision speed of the obstructed object is deduced through the gating cycle unit.The experiment shows that this method has a good effect in the prediction of the collision speed of the obstructed object of the arresting device.

rope collision speed of blocking objectssoft sensorconvolution neural networkgated recurrent neural net-workchannel attention

杨皓翔、徐兴华

展开 >

海军工程大学舰船综合电力技术国防科技重点实验室 武汉 430033

阻拦装置 软测量 卷积神经网络 门控循环单元 通道注意力

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(2)
  • 12