首页|基于机载多相机的无人机移动目标实时跟踪

基于机载多相机的无人机移动目标实时跟踪

扫码查看
在无人机平台上部署实时且高效的目标跟踪算法是计算机视觉领域的研究热点之一。论文对孪生跟踪算法中的SiamRPN模型进行了改进,设计了能够在机载处理器上实时运行且与SiamRPN性能接近的单目标跟踪模型Siam-RPN-V3,在NVIDIA Jetson TX2处理器上,SiamRPN-V3将SiamRPN的推理速度由14 FPS(Frames per second)提高到了25 FPS。在伺服控制部分,论文提出了两阶段单目测距算法,使无人机对地面目标跟踪摆脱了高度限制;同时使用四台相机实现了全局视野平台和多相机切换策略,提高了对地面快速移动目标的跟踪能力。
Real-time Moving Object Tracking of UAV Based on On-board Muitl-camera
Deploying real-time and efficient target tracking algorithms on unmanned aerial vehicle(UAV)is one of the re-search hotspots in the field of computer vision.This paper designs a single-target tracking model called SiamRPN-V3,which can run in real-time on the on-board processor and has a performance close to SiamRPN,and on the NVIDIA Jetson TX2,Siam-RPN-V3 improves the inference speed of SiamRPN from 14 FPS to 25 FPS.This paper also proposes a two-stage monocular ranging algorithm,which enables the UAV to track ground targets free from the height limitation.Meanwhile,a global field of view platform and a multi-camera switching strategy are implemented using four cameras to improve the tracking capability of fast-moving ground targets.

unmanned aerial vehiclesingle object trackingSiamRPNvision servoNVIDIA Jetson TX2

王昱、蔡华悦、戴文君、骆志刚

展开 >

国防科技大学计算机学院 长沙 410073

中国人民解放军32526部队 无锡 214000

无人机 单目标跟踪 SiamRPN 视觉伺服 NVIDIA Jetson TX2

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(4)