首页|基于改进EfficientNet的细粒度图像识别

基于改进EfficientNet的细粒度图像识别

扫码查看
普通CNN模型直接应用于细粒度图像识别时关键特征提取不充分,导致模型细粒度识别准确率较低,针对这个问题,论文提出了一种基于改进EfficientNet的细粒度图像识别算法,以EffcientNetB3为主干,在全局平均池化层(GAP Layer)之前添加一个CBAM注意力模块,提升模型关键特征提取能力。论文利用迁移学习训练得到细粒度识别网络,实验结果表明,训练得到的改进模型在CUB-200-2011数据集上的识别准确率达到了84。5%左右,相比于原网络准确率提升了5。4%,另外与常用CNN模型相比模型复杂度更低,识别准确度更好。
Fine-grained Image Recognition Based on Improved EfficientNet
When the ordinary CNN model is directly applied to fine-grained image recognition,the key features are not extracted sufficiently,resulting in low recognition accuracy.In order to solve this problem,this paper proposes a fine-grained image recognition algorithm based on improved EfficientNet,with EffcientNetB3 as the backbone,and adds a CBAM attention module before the Global Average Pooling Layer to improve the key feature extraction ability of the model.In this paper,the fine-grained recognition network is trained by transfer learning,and the experimental results show that the recognition accuracy of the improved model on the CUB-200-2011 dataset reaches about 84.5%,which is 5.4%higher than that of the original network,and the model complexity is lower and the recognition accuracy is better than that of the commonly used CNN model.

EfficientNetB3weak supervisionCBAM attention modulefine-grained recognition

许成君

展开 >

91404部队 秦皇岛 066000

EffcientNetB3 弱监督 CBAM注意力模块 细粒度图像识别

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(5)
  • 13