首页|基于轨迹图片特征距离的船舶轨迹聚类

基于轨迹图片特征距离的船舶轨迹聚类

扫码查看
为了进一步优化海上交通管理,针对基于多维属性的船舶轨迹聚类算法难以设置权重参数、运行时间长的问题,提出了一种基于轨迹图片特征距离的船舶轨迹聚类算法.该算法利用船舶自动识别系统(AIS)数据,根据轨迹点的位置、航速和航向绘制轨迹图片,通过深度残差网络提取轨迹图片特征,采用主成分分析技术降低特征维度,基于欧式距离实现轨迹间的距离度量,并通过基于密度的含噪数据空间聚类算法(DBSCAN)对降维后的船舶轨迹图片特征聚类.实验结果表明,论文所提算法能够在降低运行时间的情况下,对实验水域轨迹进行有效聚类,反映的船舶交通流特征符合实际情况.
Ship Trajectory Clustering Based on Image Feature Distance
In order to further optimize the management of maritime traffic,a ship trajectory clustering algorithm based on dis-tance metrics of trajectory image features is proposed.This algorithm aims to address the problems of difficult setting of weight pa-rameters and long running time for traditional ship trajectory clustering algorithms based on multiple dimensional attributes.The al-gorithm utilizes Automatic Identification System(AIS)data to draw trajectory images based on the position,speed,and course of trajectory points.The trajectory image features are extracted via a deep residual network trained on large-scale image data.The fea-ture dimensionality is reduced via principal component analysis.The distance measure between trajectories is based on the Euclide-an distance of feature vectors.The density-based noise-tolerant clustering algorithm(DBSCAN)is employed to cluster the reduced ship trajectory image features.Experiment results show that the proposed algorithm can effectively cluster the trajectories while re-ducing the running time.The characteristics of the ship traffic flow reflected by the trajectory clusters are consistent with the actual situation.

ship trajectory clusteringship trajectory distance measureDBSCANcharacteristics of the ship traffic flow

史祺、范亚琼、张丹普、杨剑锋

展开 >

中国航天科工集团第二研究院 北京 100039

北京航天长峰科技工业集团有限公司 北京 100039

船舶轨迹聚类 船舶轨迹距离度量 DBSCAN 船舶交通流特征

国家重点研发计划

2020YFC0833406

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(6)
  • 8