首页|图像数据增广技术研究

图像数据增广技术研究

扫码查看
数据是人工智能的基础,数据集的规模与质量在很大程度上影响着模型的训练效果.在深度学习实践中,常常会面临数据样本数量不足、类别分布不均匀等情况,引发模型无法收敛、过拟合、陷入局部最优等问题,无法达到预期训练效果.为解决这一问题,数据增广技术应运而生.论文针对目标检测领域的图像数据增广技术,从传统数据增广技术和基于深度学习的数据增广技术进行归类整理,归纳了数据增广技术的概念及意义,总结了数据集规模预估方法及影响因素,系统分析各类增广技术的实现方法,为研究人员针对不同模式的数据进行增广提供研究思路.
Research on Image Data Augmentation Technology
Data is the foundation of artificial intelligence,and the size and quality of the dataset greatly affect the training ef-fect of the model.In the practice of deep learning,it is often faced with insufficient data sample size and uneven class distribution,which leads to problems such as model convergence,overfitting,and falling into local optimum,and cannot achieve the expected training effect.To solve this problem,data augmentation technology has emerged.Aiming at the image data augmentation technology in the field of object detection,this paper classifies and organizes the traditional data augmentation technology and the data augmen-tation technology based on deep learning,summarizes the concept and significance of data augmentation technology,summarizes the data set size estimation methods and influencing factors,systematically analyzes the implementation methods of various augmen-tation technologies,and provides research ideas for researchers to augment data in different modes.

data augmentationdeep learningneural networks

姜林、金朋飞、耿杰恒

展开 >

中国人民解放军63892部队 洛阳 471003

数据增广 深度学习 神经网络

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(8)
  • 4