首页|基于预训练模型的问答系统设计

基于预训练模型的问答系统设计

扫码查看
旨在基于spaCy基础预训练模型设计一个军事领域问答系统.首先,引入了一种实体识别的方法,利用义原相似度评估的方法对该模型进行扩展和微调.随后,探讨了把匹配器(Matcher)组件添加进spaCy管道并结合Adam神经网络优化器进行实体关系提取的方法.经验证,上述方法在特定领域对实体和实体关系的识别度比spaCy基础预训练模型有所提升,较好解决了军事领域标记预料不足的问题,为军事领域问答系统的开发与应用提供了可靠的借鉴.
Design of a Question-answering System Based on Pre-trained Models
Aims to design a question-answering system in the military domain based on the basic pre-trained models of spa-Cy.Firstly,a method for entity recognition is introduced,which extends and fine-tunes the model using similarity assessment.Sub-sequently,the integration of the Matcher component into the spaCy pipeline,coupled with the Adam neural network optimizer,is explored for extracting entity relationships.Validation shows that the aforementioned approach improves the recognition accuracy of entities and entity relationships compared to the basic pre-trained model of spaCy,addressing the issue of insufficient labeled data in the military domain effectively.This provides a reliable reference for the development and application of question-answering sys-tems in the military domain.

spaCypre-trained modelsNERsemantic similarityMatcher

许诚、程强、白金辉、卢坤

展开 >

空军预警学院 武汉 430019

中国人民解放军93147部队 成都 610031

spaCy 预训练模型 实体识别 义原相似度 Matcher

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(8)
  • 7