首页|基于极端通道先验和梯度倒谱的图像盲复原

基于极端通道先验和梯度倒谱的图像盲复原

扫码查看
针对极端通道先验去模糊方法复原得到的图像经常出现振铃伪影等问题,提出一种基于极端通道先验和梯度倒谱的单幅图像盲去模糊方法.首先,对极端通道先验施加l0 范数约束并将其引入到最大后验概率框架中构造出模糊核估算模型;然后,对模糊核进行多尺度交替迭代估计,在迭代过程中利用半二次方分裂法有效解决模型的非凸问题.为了抑制每个尺度的过度迭代,利用核相似度来评估迭代过程中的模糊核细微变化,从而使得最终迭代得到的模糊核更加精确.最后,通过非盲解卷积实现图像的去模糊.实验表明,所提方法在合成数据集与真实数据集上取得了良好效果,能够抑制伪影和恢复出更多的图像细节.
Blind Image Restoration Based on Extreme Channel Prior and Gradient Cepstrum
Aiming at the problems of ringing artifacts in the images recovered by the extreme channel prior deblurring method,a single image blind deblurring method based on the extreme channel prior and gradient cepstrum is proposed.Firstly,the l0 norm constraint is imposed on the extreme channel prior and introduced into the maximum a posteriori probability framework to construct the fuzzy kernel estimation model.Then,the fuzzy kernel is estimated by multi-scale alternating iterative estimation,and the semi-quadratic splitting method is used to effectively solve the non-convex problem of the model in the iterative process.In order to inhibit the excessive iteration of each scale,the kernel similarity is used to evaluate the subtle changes of the fuzzy kernel in the iter-ative process,so that the final iterative fuzzy kernel is more accurate.Finally,the image deblurring is realized by non-blind deconvo-lution.Experimental results show that the proposed method achieves good results on both synthetic and real datasets,which can sup-press artifacts and recover more image details.

extreme channel priorgradient cepstrumfuzzy kernelmulti-scalehalf quadratic splitting

鱼轮、邢笑笑

展开 >

商洛学院电子信息与电气工程学院人工智能研究中心 商洛 726000

极端通道先验 梯度倒谱 模糊核 多尺度 半二次方分裂法

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(10)