首页|基于门控循环网络的故障诊断方法研究

基于门控循环网络的故障诊断方法研究

扫码查看
核动力装置具有内反馈和强耦合的特征,使得内部工况环境复杂,一旦出现异常则更有可能发生高风险事故.为了提高核动力装置运行的安全性,论文提出了一种基于门控循环网络的故障诊断方法,该方法利用核动力装置运行过程中产生的数据进行瞬态特征与时变特征的提取,通过梯度提升树算法和门控循环网络算法进行联合诊断.实验结果表明,与其他模型相比,该模型能够更加准确地判断每一个故障,故障诊断的准确率达到99.9%以上.
Research on Fault Diagnosis Method Based on Gate Recurrent Unit Network
Nuclear power plant has the characteristics of internal feedback and strong coupling,which makes the internal working environment complex,and once the abnormal situation is more likely to occur high-risk accidents.In order to improve the safety of nuclear power plant operation,a fault diagnosis method based on gated cycle network is proposed in this paper,in this method,the transient and time-varying features are extracted from the data generated during the operation of nuclear power plant.The experimental results show that the model can judge each fault more accurately than other models,and the accuracy of fault diag-nosis is over 99.9%.

nuclear power systemfault diagnosisgradient boosting decision treegated recurrent units neural network

韩东江、戴新发

展开 >

武汉数字工程研究所 武汉 430205

核反应堆装置 故障诊断 梯度提升树 门控循环网络(GRU)

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(10)