首页|基于最小平行四边形的对海侦察区域计算方法

基于最小平行四边形的对海侦察区域计算方法

扫码查看
对于给定任意的凸多边形,在该凸多边形的外接平行四边形中寻找面积最小的即为最小包围平行四边形问题。在海战场针对目标海域执行侦察过程中,若已知目标海域形状,如何确定预警机、舰载直升机等侦察兵力的预警、搜索范围就转化为了该问题的求解过程。讨论了对于该问题求解的当前国内外相关研究和现行使用的求解程序,该程序不仅低效而且有概率得出错误答案。基于几何原理给出了更一般的凸多边形的最小包围平行四边形求解方法,其原理简介,时间复杂度为O(n2)。给出了最优化的求解算法,其时间复杂度在原理上近似于O(n)。通过随机生成的凸多边形测试了上述算法,实验进一步证实了算法可以在线性时间复杂度内求解最小包围问题。
A Method for Calculating Sea Reconnaissance Area Based on Minimum Bounding Parallelogram
For a given convex polygon,finding the bounding parallelograms with minimal area of this convex polygon belongs to the minimum enclosing problem.In the process of reconnaissance in the sea battlefield against the target sea area,if the shape of the target sea area is known,how to determine the early warning and search range of the reconnaissance forces such as early warning aircraft and shipborne helicopters is transformed into the solution process of the problem.Related work and a currently used solution are discussed,which is neither efficient nor able to figure out always correct answer.A more general method is given with time com-plexity of O(n2)for solving the minimum enclosing parallelogram for convex polygons based on geometric principles with an intro-duction to the principles.An optimized algorithm is given with time complexity approximating O(n)in principle.The above algo-rithm is tested with randomly generated convex polygons,the experiments confirm that the algorithm does solve the minimum enve-lope problem in linear time complexity.

sea reconnaissance areaminimal bounding problemsconvex polygonparallelogramsminimal area

韩春亮、鲁爱国、左谦

展开 >

91404部队 秦皇岛 060000

武汉数字工程研究所 武汉 430205

中国人民武装警察部队重庆市总队船艇支队 重庆 404100

对海侦察区域 最小包围问题 凸多边形 平行四边形 面积最小

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(11)