舰船电子工程2024,Vol.44Issue(11) :76-80,85.DOI:10.3969/j.issn.1672-9730.2024.11.016

基于Transformer的航空器航迹预测研究

Aircraft Trajectory Prediction Based on Transformer

陈亚青 陈九龙
舰船电子工程2024,Vol.44Issue(11) :76-80,85.DOI:10.3969/j.issn.1672-9730.2024.11.016

基于Transformer的航空器航迹预测研究

Aircraft Trajectory Prediction Based on Transformer

陈亚青 1陈九龙2
扫码查看

作者信息

  • 1. 中国民用航空飞行学院空中交通管理学院 广汉 618307
  • 2. 中国民用航空飞行学院飞行技术与飞行安全科研基地 广汉 618307
  • 折叠

摘要

为进一步提高航空器航迹预测精度,结合编码器-解码器结构和多头自注意力机制,构建了基于Transformer的航空器航迹预测模型.研究以航空器机载快速存取记录器(QAR)设备数据为研究内容,按8:2的比例划分模型训练集和测试集,提取经纬度、高度、速度等航迹特征构造航迹特征向量,输入Transformer预测模型进行训练.利用MSE和绝对系数R2模型评价指标,对Transformer模型、LSTM模型和BP模型的预测结果进行评估对比.评估结果表明,Transformer航迹预测模型相比其他两种预测模型,具有更高的预测精度.

Abstract

In order to further improve the accuracy of aircraft trajectory prediction,the encoder-decoder structure and multi-head self-attention mechanism are combined to construct a Transformer-based aircraft trajectory prediction model.This paper focuses on the data from the aircraft onboard quick access recorder(QAR)devices.The model training set and test set are divided in an 8:2 ratio.Trajectory features such as latitude,longitude,altitude,and speed are extracted to construct trajectory feature vectors,which are then input into the Transformer prediction model for training.The prediction results of the Transformer model,LSTM model,and BP model are evaluated and compared using MSE and the coefficient of determination(R2).The evaluation results demonstrate that the Transformer trajectory prediction model achieves higher prediction accuracy compared to the other two prediction models.

关键词

航迹预测/Transformer/多头自注意力机制/QAR/深度学习

Key words

trajectory prediction/Transformer/multi-head self-attention mechanism/QAR/deep learning

引用本文复制引用

出版年

2024
舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
段落导航相关论文