首页|一种改进的DSVDD异常检测方法

一种改进的DSVDD异常检测方法

扫码查看
为解决传统异常检测方法泛化性能较低等问题,提出一种基于混合核最大相关熵的深度支持向量数据描述(MM-DSVDD)异常检测方法.首先,使用最大相关熵损失函数替换均方差误差损失函数;然后,由混合核改进最大相关熵损失函数原有的固定核,提高模型的鲁棒性和泛化性能;最后,构建基于MM-DSVDD的异常检测方法,在MNIST和Fashion MNIST数据集中均达到较高的AUC值,表明该方法具有较好的泛化性能和应用前景.
An Improved DSVDD Anomaly Detection Method
To solve the problem of low generalization performance of traditional anomaly detection method AUC,a deep sup-port vector data description anomaly detection method based on hybrid kernel maximum correlation entropy is proposed.Firstly,the mean square error loss function is replaced by the maximum correlation entropy loss function.Then,the original fixed kernel of the maximum correlation entropy loss function is improved by hybrid kernel to improve the robustness and generalization performance of the model.Finally,the anomaly detection method based on MM-DSVDD is constructed,and the high AUC value is achieved in both MNIST and Fashion MNIST datasets,indicating that the MM-DSVDD anomaly detection method has high accuracy and appli-cation prospect.

mixed kenelsmaximum correlation entropyanomaly detectioncondition monitoringdeep support vector da-ta description

曲建岭、陈永展、戴豪民、王元鑫

展开 >

海军航空大学青岛校区 青岛 266041

混合核 最大相关熵 异常检测 状态监控 深度支持向量数据描述

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(11)