首页|改进RANSAC的低能见度无人机图像匹配方法

改进RANSAC的低能见度无人机图像匹配方法

扫码查看
为了解决无人机在低能见度环境下俯拍图像精度差,有效特征点数量减少以及鲁棒性低等问题,提出基于改进随机采样一致性(RANSAC)的低能见度无人机图像匹配方法.首先,在SURF算法中增加Daisy描述符,提高特征点提取的运行速度,增加在低能见度环境下算法的鲁棒性.其次,改进RANSAC算法,采用分块法和动态阈值来剔除图像的误匹配,提高特征点匹配精度.最后,使用VisDrone数据集,将随机选取的图片进行特征点检测的验证,将传统RANSAC算法与改进的RANSAC算法进行比较,验证提出的算法.实验结果显示:特征点检测速度得到了大幅度提高,且改进的RANSAC算法相较于传统RANSAC算法在不同环境下的匹配精度分别提升了9.5%和16.9%.
Improved RANSAC UAV Image Matching Method in Low-visibility
In order to solve the problems of poor overhead image accuracy,reduced number of effective feature points and low robustness of UAV(Unmanned Aerial Vehicle)in low visibility environment,a low visibility UAV image matching method based on improved RANSAC(random sample consensus)is proposed.Firstly,the Daisy descriptor is added to the SURF(Speeded Up Ro-bust Feature)algorithm to improve the number of feature point extraction,and increases the robustness of the algorithm in low visi-bility environment.Secondly,the RANSAC algorithm is improved,and the block method and dynamic threshold are used to elimi-nate false matching of images and improve the matching accuracy of feature points.Finally,by using the VisDrone dataset,the ran-domly selected pictures are verified for feature point detection,and the traditional RANSAC algorithm is compared with the im-proved RANSAC algorithm to verify the proposed algorithm.The experimental results show that the feature point detection speed is greatly improved,and the matching accuracy of the improved RANSAC algorithm in different environments is improved by 9.5%and 16.9%compared with the traditional RANSAC algorithm.

UAVRANSACimage registrationvisual odometer

王雪、王在俊、钱奕舟、高耀文、刘人杰

展开 >

中国民用航空飞行学院空中交通管理学院 广汉 618307

中国民用航空飞行学院民航飞行技术与飞行安全科研基地 广汉 618307

无人机 随机采样一致性 图像匹配 视觉里程计

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(11)