首页|一种基于去噪自编码器的深度学习目标跟踪滤波方法

一种基于去噪自编码器的深度学习目标跟踪滤波方法

扫码查看
深度学习模型拥有对复杂模式强大的学习能力,被应用于目标跟踪任务中并取得了显著的进步。然而,现有的基于深度学习的目标跟踪模型采用循环神经网络的方法,这种建模方式存在着对高噪声目标观测数据中的噪声处理能力不足以及真实轨迹恢复能力不足的问题。针对上述问题,论文提出了一种基于去噪自编码器的轨迹跟踪模型Deep Denois-ing,该模型采取了一种编-解码架构的数据处理方式,带有噪声的目标观测轨迹数据首先经过一个编码网络去除数据中噪声,并且学习一个隐向量表示目标运动特征,然后采用一个解码网络根据目标运动特征还原目标真实运动轨迹。论文采用模拟仿真的轨迹数据进行实验验证,结果显示论文所提的方法可以有效降低目标跟踪的均方误差,提高跟踪效果。
A Target Tracking Filtering Method Based on Deep Learning with Denoising Autoencoder
With the rise of deep learning in recent years,deep learning models have also been applied to target tracking and have made significant progress due to their powerful learning ability for complex patterns.However,existing deep learning-based target tracking models use recurrent neural network approach,and this modeling approach does not have enough ability to handle the noise in the highly noisy target observation data and to recover the real trajectory.To address the above problems,this paper pro-poses a de-dry self-encoder-based trajectory tracking model,which adopts a code-decode data processing approach,firstly,a cod-ing network removes the noise from the data and learns the main features of the target motion,and then a decoding network is used to restore the real motion of the target.The results show that the proposed method can effectively reduce the mean square error of tar-get tracking and improve the tracking effect.

target trackingdeep learningdenoising autoencoder

古英汉、王峰

展开 >

91977部队 北京 100036

目标跟踪 深度学习 去噪自编码器

2024

舰船电子工程
中国船舶重工集团公司第709研究所 中国造船工程学会 电子技术学术委员会

舰船电子工程

CSTPCD
影响因子:0.243
ISSN:1627-9730
年,卷(期):2024.44(11)