首页|基于领域自适应预训练的黑暗场景下行为识别研究

基于领域自适应预训练的黑暗场景下行为识别研究

Domain-Adaptive Pretraining for Action Recognition in the Dark Scenes

扫码查看
黑暗场景与传统预训练模型所使用的数据之间的域差距导致传统的预训练-微调策略难以达到理想效果,而从头开始的预训练则代价高昂.针对此问题,该研究提出一种领域自适应预训练方法,旨在改善黑暗场景下的行为识别性能.该方法通过融合外部视觉去暗增强模型,引入关键的去暗知识,并利用跨领域自蒸馏框架优化预训练模型,可有效减小明暗场景间视觉表征的域差异.在一系列黑暗场景行为识别实验中,该方法在全监督的黑暗场景行为识别数据集中的准确率达 97.19%;在无源领域自适应场景数据集中的准确率提升至 49.11%;而在多源领域自适应场景数据集中的准确率达54.63%.
The domain gap between dark scenes and the data used by traditional pretrained models leads to suboptimal performance with the conventional pretrain-finetune approach,and pretraining from scratch is costly.To address this issue,a domain-adaptive pretraining method is proposed to improve action recognition performance in the dark environments.The method integrates an external vision enhancement model for de-darkening to introduce critical knowledge for dark scene processing.It also employs a cross-domain self-distillation framework to reduce the domain gap of visual representations between illuminated and dark scenes.Through extensive experiments in various dark environment action recognition settings,the proposed approach can achieve a Top1 accuracy of 97.19%on the dark dataset of fully supervised action recognition.In the source-free domain adaptation on the Daily-DA dataset,the accuracy can be improved to 49.11%.In the multi-source domain adaptation scenario on the Daily-DA dataset,the Top1 accuracy can reach 54.63%.

dark scenesaction recognitiontransfer learningdomain adaptation

许清林、乔宇、王亚立

展开 >

中国科学院深圳先进技术研究院 深圳 518055

中国科学院大学 北京 100049

上海人工智能实验室 上海 200232

黑暗场景 行为识别 迁移学习 领域自适应

2025

集成技术
中国科学院深圳先进技术研究院

集成技术

影响因子:0.238
ISSN:2095-3135
年,卷(期):2025.14(1)