首页|基于1DCNN-GRU模型和贝叶斯检验的引风机故障预警

基于1DCNN-GRU模型和贝叶斯检验的引风机故障预警

扫码查看
为了实现电厂中引风机状态的监测和故障预警,将一维卷积神经网络(one-dimensional convolutional neural network,1DCNN)和门控循环单元(gate recurrent unit,GRU)相结合,提出了一种基于 1DCNN-GRU 的轴承状态监测与预警模型.首先,通过距离相关系数评估相关变量,并通过最小冗余最大相关算法来筛选建模变量,使用1DCNN进行特征提取,通过GRU得到引风机轴承振动速度预测模型.然后,引入贝叶斯检验,充分利用先验信息,捕捉故障信号的早期蠕变,及时识别机组异常以实现预警.最后,以某1 000 MW机组中的引风机为例对模型进行实验验证.实验结果表明,所提模型的预测精度优于其他神经网络模型,且预警方法比普通滑动窗口法更及时、更有效.
Early Fault Warning of Induced Draft Fans Based on 1DCNN-GRU Model and Bayesian Test
In order to realize the condition monitoring and fault warning of induced draft fans in power plants,one-dimensional convolutional neural network(1DCNN)and gate recurrent unit(GRU)are combined,and a bearing condition monitoring and warning model based on 1DCNN-GRU is proposed.Firstly,the correlation variables are evaluated by distance correlation coefficient,and the modeling variables are selected by minimal-redundancy-maximal-relevance algorithm.1DCNN is used for feature extraction,and the prediction model of induced draft fan bearing vibration velocity is obtained by GRU.Then,Bayesian test is introduced to make full use of prior information to capture the early creep of the fault signal and timely identify unit anomalies to realize early warning.Finally,an induced draft fan of a 1 000 MW unit is taken as an example to verify the model.The experimental results show that the prediction accuracy of the proposed model is better than that of other neural network models,and the early warning method is more timely and more effective than the common sliding window method.

Fault warninginduced draft fanneural networkBayesian test

陈鹏杰、马乐乐、孔小兵、刘向杰

展开 >

华北电力大学 控制与计算机工程学院,北京 102206

故障预警 引风机 神经网络 贝叶斯检验

2025

控制工程
东北大学

控制工程

北大核心
影响因子:0.749
ISSN:1671-7848
年,卷(期):2025.32(1)