首页|基于ISSA-Stacking集成学习的共享单车租赁量预测

基于ISSA-Stacking集成学习的共享单车租赁量预测

扫码查看
针对共享单车供需不平衡问题,结合Stacking算法和改进麻雀搜索算法(improved sparrow search algorithm,ISSA),提出了一种基于ISSA-Stacking算法的共享单车租赁量预测模型.首先,利用相关性分析法和轻量级梯度提升机进行特征选择;然后,建立多种异质回归预测模型并采用ISSA对各模型的关键超参数进行优化,通过引入精英反向学习策略和自适应种群比例因子来提高麻雀搜索算法的全局搜索能力和收敛速度;最后,利用Stacking算法的集成学习思想对各模型进行融合.实验使用美国华盛顿地区的共享单车出行数据进行租赁量预测,通过对比分析验证了所提融合模型相比单一模型在共享单车租赁量预测方面具有更高的预测精度.
Rental Volume Prediction of Shared Bicycles Based on ISSA-Stacking Ensemble Learning
To solve the problem of imbalance between supply and demand of shared bicycles,a prediction model for shared bicycle rental volume based on ISSA-Stacking algorithm is proposed by combining Stacking algorithm and improved sparrow search algorithm(ISSA).Firstly,the important features are selected by using correlation analysis method and light gradient boosting machine.Then,multiple heterogeneous regression prediction models are established and the key hyperparameters of each model are optimized by ISSA algorithm,and the global search ability and convergence speed of ISSA are improved by introducing elite reverse learning strategy and adaptive population scale factor.Finally,the models are integrated by using the ensemble learning idea of Stacking algorithm.In the experiment,the shared bicycle travel data in Washington area of the United States are used to predict the rental volume.Through comparative analysis,it is verified that the proposed integrated model has better prediction accuracy than the single model in the prediction of shared bicycle rental volume.

Prediction of shared bicycle rental volumeensemble learningimproved sparrow search algorithmfeature selection

张泽、韩晓明、韩晓霞

展开 >

太原理工大学 电气与动力工程学院,山西 太原 030024

共享单车租赁量预测 集成学习 改进麻雀搜索算法 特征选择

2025

控制工程
东北大学

控制工程

北大核心
影响因子:0.749
ISSN:1671-7848
年,卷(期):2025.32(1)