首页|基于NSGAII-RF的样本不平衡下设备故障诊断

基于NSGAII-RF的样本不平衡下设备故障诊断

扫码查看
在智能制造产业的设备缺陷与故障诊断中,欠采样容易丢失重要的样本信息,而过采样容易引入冗杂信息.针对这些问题,将带精英策略的非支配排序遗传算法(non-dominated sorting genetic algorithm II,NSGAII)融入随机森林(random forest,RF)算法中,用多目标遗传算法代替传统RF算法中的自助采样法和特征选取方法,产生多样化的、性能优良的特征子集和样本子集,从而生成多样性强、准确性高的决策树,同时确定最优的决策树数量,达到优化RF算法的性能并提高分类精度的目的.基于多类别和高度不平衡的设备故障数据集进行故障诊断实验,并将所提算法与结合了合成少数类过采样技术(synthetic minority oversampling technique,SMOTE)的集成学习算法等进行比较,实验结果表明,所提算法的故障诊断准确率优于对比算法.
Equipment Fault Diagnosis Under Sample Imbalance Based on NSGAII-RF
In the defect and fault diagnosis of intelligent manufacturing equipment,under-sampling is easy to lose important sample information,while over-sampling is easy to introduce redundant information.To solve these problems,non-dominated sorting genetic algorithm with elite strategy(NSGAII)is integrated into random forest(RF)algorithm.The multi-objective genetic algorithm is used to replace the bootstrap sampling method and feature selection method in the conventional RF algorithm to generate diversified feature subsets and sample subsets with good performance,so as to generate decision trees with strong diversity and high accuracy.At the same time,the optimal number of decision trees is determined to optimize the performance of RF algorithm and improve the classification accuracy.The fault diagnosis experiment is carried out based on the multi-class and highly unbalanced equipment fault dataset,and the proposed algorithm is compared with the integrated learning algorithm combined with synthetic minority oversampling technique(SMOTE)and other algorithms.The experimental results show that the fault diagnosis accuracy of the proposed algorithm is higher than that of the comparison algorithms.

Sample imbalanceNSGAIIdiversityfault diagnosis

邵凯文、赵芝芸、王梦灵、易树平、王理

展开 >

华东理工大学 信息科学与工程学院 能源化工过程智能制造教育部重点实验室,上海 200237

重庆大学 机械与运载工程学院,重庆 400044

中广核工程有限公司,广东 深圳 518000

样本不平衡 NSGAII 多样性 故障诊断

2025

控制工程
东北大学

控制工程

北大核心
影响因子:0.749
ISSN:1671-7848
年,卷(期):2025.32(1)