首页|基于小样本数据的风电备品备件需求预测方法研究

基于小样本数据的风电备品备件需求预测方法研究

扫码查看
全球风电装机容量不断攀升,我国风电产业也出现跨越式发展,风电行业的蓬勃发展给运维管理工作带来巨大挑战.风电运维管理中的备品备件需求预测是决定运维成本的重要因素,尤其是复杂工况下的备品备件预测是风电运维管理面临的亟待解决的问题.本文围绕风电行业运维数据呈现的小样本特征,对风电行业的小样本备品备件需求预测方法开展研究.根据风电行业备品备件运维需求特征,选择小波变换提取备品备件的历史需求数据的趋势与细节特征,选择合适的时间窗将时间序列转化为监督学习形式的时间序列对,提出混合遗传算法和支持向量回归的预测算法GA-dwtSVR,最后开展了验证实验,实验结果表明:相较于传统预测方法,GA-dwtSVR在风电备品备件需求预测中有较好的性能,可以满足风电行业备品备件基于小样本数据的预测需求.
Research on Demand Prediction Method for Wind Power Spare Parts Based on Small Sample Data
The global installed capacity of wind power is continuously increasing,and China's wind power industry has also experienced rapid development.The vigorous development of the wind power industry has brought huge challenges to the operation and maintenance(O&M)management.The demand prediction of spare parts in wind power O&M management is an important factor in determining the O&M cost,especially the prediction of spare parts under complex conditions is an urgent problem facing the wind power O&M manage-ment.This paper focuses on the small-sample characteristics of wind power O&M data and conducts research on small-sample spare parts demand prediction methods in the wind power industry.Based on the characteristics of spare parts demand in the wind power industry,dis-crete wavelet transform is selected to extract the trend and detailed features of historical demand data of spare parts,and an appropriate time window is chosen to transform the time series data type into a time series pairs form for supervised learning.A prediction algorithm GA-dwtSVR based on a hybrid genetic algorithm and support vector regression is proposed,and verification experiments are carried out.The experimental results show that compared with traditional prediction methods,GA-dwtSVR has better performance in spare parts demand prediction for wind power and can meet the prediction needs of wind power spare parts based on small-sample data.

Wind power equipment operation and maintenanceSpare parts forecastingGenetic algorithmSupport Vector RegressionWavelet transform

张健、赵焜海、吴秀丽、向东

展开 >

国能思达科技有限公司, 北京 100039

北京科技大学机械工程学院, 北京 100083

风电装备运维 备品备件预测 遗传算法 支持向量机 小波变换

国家自然科学基金国家自然科学基金

5217544951975323

2024

机电产品开发与创新
中国机械工业联合会

机电产品开发与创新

影响因子:0.211
ISSN:1002-6673
年,卷(期):2024.37(2)
  • 13