首页|基于自适应变异的粒子群优化BP神经网络的液压缸故障诊断方法

基于自适应变异的粒子群优化BP神经网络的液压缸故障诊断方法

扫码查看
本文创新性地探讨了一种液压缸故障诊断方法,该方法应用BP神经网络算法和自适应变异的粒子群优化方法,实现液压缸故障推理和判断.与传统的PSO-BP神经网络模型对比,该模型借鉴了遗传算法的思路,应用变异理论,使得粒子能够跳脱出先前搜索到的最优位置,再次进行更广泛地搜索.这种搜索方式使得算法搜索空间有较大的提升,使得算法寻优能力大大提高,有效提升了BP神经网络液压缸故障诊断模型的效率.
Fault Diagnosis Method for Hydraulic Cylinder Based on Adaptive Mutation Particle Swarm Optimized BP Neural Network
This paper innovatively explores a hydraulic cylinder fault diagnosis method that integrates adaptive mutation particle swarm opti-mization and BP neural network.In contrast to the conventional PSO-BP neural network model,we introduce a mutation operation,drawing inspiration from the genetic algorithm's concept,allowing particles to break away from previously discovered optimal positions and conduct more extensive searches.The introduction of this mutation operation expands the search space,enhances the algorithm's potential to find better solutions,and effectively improves the efficiency of the BP neural network hydraulic cylinder fault diagnosis model.

Adaptive mutation particle swarmBP neural networkHydraulic cylinderFault diagnosis

赵庆浩、周军、荆丰伟

展开 >

北京科技大学 高效轧制与智能制造国家工程中心,北京 100083

南京钢铁股份有限公司,江苏 南京 210031

自适应变异粒子群 BP神经网络 液压缸 故障诊断

2024

机电产品开发与创新
中国机械工业联合会

机电产品开发与创新

影响因子:0.211
ISSN:1002-6673
年,卷(期):2024.37(4)
  • 8