首页|未知模型工业机器人的碰撞检测研究

未知模型工业机器人的碰撞检测研究

扫码查看
本文提出了一种基于多传感器数据融合与深度学习的工业机器人碰撞检测系统.通过加速度计、力传感器和超声波传感器获取机器人状态和环境信息,采用卡尔曼滤波融合数据,提升检测准确性.利用卷积神经网络对融合数据进行特征提取和分类,实现高精度碰撞检测.实验表明,该系统在检测精度、召回率和误报率方面优于传统方法,具有较强的工业应用潜力.
Research on Collision Detection of Unknown Model Industrial Robots
This article proposes an industrial robot collision detection system based on multi-sensor data fusion and deep learning.By using accelerometers,force sensors,and ultrasonic sensors to obtain robot state and environmental information,Kalman filtering is used to fuse data and improve detection accuracy.Utilizing convolutional neural networks for feature extraction and classification of fused data to achieve high-precision collision detection.The experiment shows that the system is superior to traditional methods in terms of detection accuracy,recall rate,and false alarm rate,and has strong industrial application potential.

Multi-sensor data fusionDeep learningIndustrial robotCollision detection system

康全杰、颜文煅

展开 >

闽南理工学院光电与机电工程学院,福建石狮 362700

多传感器数据融合 深度学习 工业机器人 碰撞检测系统

2024

机电产品开发与创新
中国机械工业联合会

机电产品开发与创新

影响因子:0.211
ISSN:1002-6673
年,卷(期):2024.37(6)