首页|基于极限学习机的新能源发电功率异常值识别研究

基于极限学习机的新能源发电功率异常值识别研究

扫码查看
新能源发电受到天气条件的显著影响,导致发电功率存在较大的波动性和不确定性,这种波动性和不确定性可能掩盖或模拟真实的异常值,使得异常检测变得困难,为此提出基于极限学习机的新能源发电功率异常值识别方法.根据发电装置的覆盖面积生成流速区间数据集,从而确定异常流速区间数量,进而划分新能源发电功率异常流速区间,结合负荷波动与极限学习机实现新能源发电功率异常值识别.实验结果表明,设计的新能源发电功率异常值极限学习机识别方法的MAE、MAPE、RMSE值均较低,证明设计的识别方法的识别效果较好,能够为提高新能源发电综合效益做出一定的贡献.
Research on Identifying Abnormal Power Values in New Energy Generation Based on Extreme Learning Machines
New energy generation is significantly affected by weather conditions,resulting in significant fluctuations and uncertainties in power generation.These fluctuations and uncertainties may mask or simulate real outliers,making anomaly detection difficult.Therefore,a new energy generation power outlier recognition method based on extreme learning machines is proposed.Generate a flow rate interval dataset based on the coverage area of the power generation device,determine the number of abnormal flow rate intervals,and then divide the abnormal flow rate intervals of new energy power generation.Combining load fluctuations and extreme learning machines,identify the abnormal values of new energy power generation.The experimental results show that the MAE,MAPE,and RMSE values of the designed new energy generation power outlier limit learning machine recognition method are relatively low,proving that the recognition effect of the designed recognition method is good and can make a certain contribution to improving the comprehensive efficiency of new energy generation.

Extreme learning machineNew energyPower generationOutliersRecognition

于鸿儒、娄健

展开 >

国家能源集团宿迁发电有限公司,江苏宿迁 223800

极限学习机 新能源 发电功率 异常值 识别

2024

机电产品开发与创新
中国机械工业联合会

机电产品开发与创新

影响因子:0.211
ISSN:1002-6673
年,卷(期):2024.37(6)