首页|基于多尺度点云的自适应邻域尺寸法向量估计方法

基于多尺度点云的自适应邻域尺寸法向量估计方法

扫码查看
为了减少三维点云中邻域尺寸对基于主成分分析(PCA)的点云法向量估计精度的影响,自适应地处理不同尺度点云,提出了基于多尺度点云的自适应邻域尺寸法向量估计方法,通过分析三维点云局部邻域协方差矩阵,构建特征熵函数,根据熵函数最小准则并且引入邻域点云共线性判断实现点云最优邻域尺寸估计.分别对模拟点云与实测点云进行实验,结果表明,该方法能克服PCA方法邻域尺寸选择不合理的情况,有效提高不同尺度点云法向量估计精度.
Adaptive Neighborhood Size Method for Normal Vector Estimation Based on Multi-scale Point Cloud
To mitigate the impact of neighborhood size on the accuracy of normal vector estimation derived from principal component anal-ysis(PCA)in 3D point clouds,we propose an adaptive neighborhood size normal vector estimation method based on multi-scale point cloud data.This method determines the optimal neighborhood size by analyzing the local covariance matrix of 3D point clouds,construct-ing a feature entropy function,and minimizing this entropy function according to the principle of minimum entropy while incorporating collinearity assessments among neighboring points within the point cloud.Experimental results obtained from both simulated and real-world measured point clouds demonstrate that our proposed approach effectively addresses issues related to unreasonable neighborhood size selection in PCA methods and significantly enhances normal vector estimation accuracy across varying scales of point clouds.

Laser point cloudPCA normal vector estimationPoint cloud normal vectorPoint cloud collinearity

姚良志、孙晓、王子傲、于柳、文比强

展开 >

湖南工业大学机械工程学院,湖南株洲 412007

湖南工业大学图书馆,湖南株洲 412007

湖南高精特电装备有限公司,湖南株洲 412000

激光点云 PCA法向量估计 点云法向量 点云共线性

2025

机电产品开发与创新
中国机械工业联合会

机电产品开发与创新

影响因子:0.211
ISSN:1002-6673
年,卷(期):2025.38(2)