首页|基于改进JRD及误差修正的轴承剩余寿命预测方法

基于改进JRD及误差修正的轴承剩余寿命预测方法

扫码查看
目前,风电机组齿轮箱性能发生初始退化时难以识别,现有退化指标易出现剧烈波动、单调性较差,且无法准确预测齿轮箱关键部件如轴承的剩余使用寿命(RUL),针对该问题,提出了一种基于改进杰森-瑞丽散度(JRD)及误差修正的双指数模型轴承RUL预测方法.首先,提取了振动信号样本的多域特征指标,利用高斯混合模型(GMM)与指数型权重JRD,得到了样本的后验概率分布向量,再经归一化处理得到置信值(CV);然后,对轴承从初始健康状态退化至当前检查时刻的CV值进行了相空间重构,提取了 CV序列的动力学特征,并将其作为相关向量机(RVM)的训练集,获得了支撑整个退化轨迹的相关向量;最后,利用双指数模型拟合了相关向量,外推趋势至失效门限以计算RUL,并引入了差分整合移动平均自回归模型(ARIMA),对拟合相关向量产生的拟合误差进行了预测,以修正预测的结果.实验结果表明:改进后的退化指标单调性指标提高14.3%;且在不同工况、不同时刻下,经误差修正后的轴承的RUL预测结果较未修正之前有明显提高.研究结果表明:该预测方法可为风电机组齿轮箱重要部件的预测性维护提供参考.
Residual life prediction method of bearing based on improved JRD and error correction
At present,it is difficult to identify the initial degradation of the gearbox performance of wind turbines,and the existing degradation indicators are prone to dramatic fluctuations and poor monotonicity,which can not accurately predict the remaining useful life(RUL)of key components of the gearbox such as bearings.To solve this problem,a dual-exponential model bearing RUL prediction method with improved Jensen-Rényi divergence(JRD)and error correction is proposed.Firstly,the multi-domain characteristic index was extracted from the vibration signal sample,the posterior probability distribution vector of the sample was obtained by using Gaussian mixture model(GMM)and exponential weight JRD,and then the confidence value(CV)was obtained by normalization.Then,phase space reconstruction was performed on the CV values of the bearing from the initial healthy state up to the current inspection moment,in order to extract the dynamics of the CV sequence and use it as a training set for the relevance vector machine(RVM)to obtain the correlation vectors that underpin the entire degradation trajectory.Finally,the resulting correlation vector was fitted using a biexponential model,the trend was extrapolated to the failure threshold,and the RUL was calculated;at the same time,the differential autoregressive integrated moving average model(ARIMA)was introduced to predict the fitting error generated by the fitting correlation vector to correct the prediction results.The experimental results verify that the monotony index of the improved degradation index is increased by 14.3%,and after the error correction,the RUL prediction results of bearings under different working conditions and at different times are significantly improved.The research results show that this method can provide reference value for predictive maintenance planning of important components of wind turbine gearbox.

rolling bearingremaining useful life(RUL)predictionGaussian mixture model(GMM)Jensen-Rényi divergence(JRD)error correctiondual-exponential modelconfidence value(CV)differential autoregressive integrated moving average model(ARIMA)

刘玉山、张旭帮、王灵梅、孟恩隆、郭东杰

展开 >

山西大学自动化与软件学院,山西太原 030006

国家电投集团山西新能源有限公司,山西太原 030006

滚动轴承 剩余使用寿命预测 高斯混合模型 杰森-瑞丽散度 误差修正 双指数模型 置信值 差分整合移动平均自回归模型

山西省重点研发计划项目山西省自然科学基金资助项目

202202010101001202103021224023

2024

机电工程
浙江大学 浙江省机电集团有限公司

机电工程

CSTPCD北大核心
影响因子:0.785
ISSN:1001-4551
年,卷(期):2024.41(1)
  • 21