首页|融合Inception V1-CBAM-CNN的轴承剩余寿命预测模型

融合Inception V1-CBAM-CNN的轴承剩余寿命预测模型

扫码查看
针对现有的滚动轴承剩余寿命(RUL)预测方法精度低、轴承健康指标(HI)构建困难等问题,提出了一种基于卷积神经网络(CNN)并融合Inception V1模块和卷积注意力机制模块(CBAM)的滚动轴承RUL预测模型.首先,在CNN中添加了 CBAM机制,并进行了加权处理,在通道和空间维度对重要特征进行了强化,对次要特征进行了抑制,通过添加改进的InceptionV1模块,提高了CNN通道间信息交互水平,全面提取了退化特征;然后,进行了网络优化,采用全局最大池化(GMP)方法对模型进行了简化,采用Dropout和批量归一化(BN)方法,避免了过拟合,提高了精度,且克服了训练时出现的梯度消失问题;最后,对数据进行了处理,将降噪后的信号重组为三维张量,将其作为m,构建了退化标签,引入了评价指标,采用PHM2012轴承数据集进行了实验验证,在3种工况下将其与深度神经网络(DNN)、CNN方法、结合注意力机制的残差网络方法(ResNet)进行了对比.研究结果表明:该方法在变负载条件下的平均RMSE为0.033,较其他方法的RMSE值分别降低了 86%、78%和69%,在预测精度和泛化能力方面具有明显优势.
Residual life prediction model of bearings based on Inception V1-CBAM-CNN
Aiming at the problems such as low accuracy of the existing prediction method of residual useful life(RUL)of rolling bearing and difficult construction of bearing health index(HI),a prediction model for RUL of rolling bearings based on convolutional neural network(CNN)and integration of Inception V1 module and convolutional block attention module(CBAM)was proposed.Firstly,CBAM mechanism was added to CNN for weighted processing,and important features were strengthened and minor features were suppressed in channel and spatial dimensions.An improved Inception Vl module was added to improve information interaction between CNN channels and extracted degraded features comprehensively.Then,the network was optimized,the model was simplified by using the global maximum pooling(GMP)method,Dropout method and batch normalization(BN)method to avoid overfitting and improving the accuracy and overcoming the gradient disappearance problem during training.Finally,the data was processed,the signal after noise reduction was reconstructed into a three-dimensional tensor as the bearing health index HI,the degradation label was constructed and the evaluation index was introduced.The PHM2012 bearing data set was experimentally verified and compared with deep neural network(DNN),CNN and residual network method combined with attention mechanism(ResNet)under three working conditions.The results show that the average RMSE of the proposed method under variable load conditions is 0.033.Comparing with other methods,RMSE is respectively reduced by 86%,78%and 69%,which has obvious advantages in prediction accuracy and generalization ability.

rolling bearingresidual useful lifeInception V1 moduleconvolutional block Attention module(CBAM)convolutional neural network(CNN)global maximum pooling(GMP)batch normalization(BN)

余江鸿、彭雄露、刘涛、杨文、叶帅

展开 >

湖南工业大学机械工程学院,湖南株洲 412007

高性能滚动轴承技术湖南省高校重点实验室,湖南株洲 412007

湖南铁道职业技术学院轨道交通装备智能制造学院,湖南株洲 412001

滚动轴承 剩余使用寿命 Inception V1模块 卷积注意力机制模块 卷积神经网络 全局最大池化 批量归一化

湖南省自然科学基金资助项目湖南省自然科学基金资助项目

2021JJ500542021JJ60069

2024

机电工程
浙江大学 浙江省机电集团有限公司

机电工程

CSTPCD北大核心
影响因子:0.785
ISSN:1001-4551
年,卷(期):2024.41(1)
  • 19