首页|基于仿真数据和子领域自适应的轴承故障网络诊断框架

基于仿真数据和子领域自适应的轴承故障网络诊断框架

扫码查看
在实际工业环境中,往往缺乏相应工况的轴承故障数据用于模型训练,这限制了深度学习在工业场景中的应用.基于此,采用两种建模方式生成了轴承故障信号,将其用于训练模型,并利用深度子领域自适应方法,缩小了模拟信号和真实信号间的差异,提升了模型对真实信号的诊断精度.首先,采用数学建模和基于LS-DYNA的有限元仿真两种方式建立了轴承故障仿真模型,以获取与实际场景相同工况下的轴承故障仿真加速度信号;其次,针对仿真数据和真实数据存在差异的问题,利用子领域自适应方法得到了对齐仿真数据和实际数据的全局特征分布以及相关子领域的特征分布;最后,采用原始一维振动信号作为输入,在残差神经网络(ResNet)模型架构上完成了端到端的轴承故障分类工作;将德国帕德博恩大学采集到的轴承故障信号作为实验数据,对上述模型的有效性进行了验证.研究结果表明:相较于有限元仿真,数学建模生成的仿真信号能够较轻易地迁移到实际信号,在无标签数据场景下具有99.73%的轴承故障识别精度,体现了数学建模在无监督轴承故障诊断领域的广阔应用前景,是在真实工业系统和人工智能之间架起桥梁的关键技术.
Network diagnosis framework for bearing faults based on simulation data and subdomain adaptation
In practical industrial environments,there is often a lack of bearing fault data for corresponding operating conditions for model training,which limits the application of deep learning in industrial scenarios.Based on this,two modeling methods were used to generate bearing fault signals,which were used for training the model.Deep sub domain adaptive methods were used to narrow the difference between simulated and real signals,improving the diagnostic accuracy of the model for real signals.Firstly,both mathematical modelling and LS-DYNA-based finite element simulation were used to build a bearing fault simulation model to obtain the simulated acceleration signals of bearing faults that had the same working conditions as the actual scenario.Secondly,to reduce the domain shift between the simulated and real data,the subdomain adaptation method was used to align the global feature distributions and related subdomain feature distributions of the simulated and real data.Finally,the original one-dimensional vibration signal was used as input to implement end-to-end bearing fault classification on the improved residual network(ResNet)model architecture.The bearing fault signals collected by the University of Paderborn were validated as experimental data.The research results indicate that comparing to finite element simulation,the simulated signals generated by mathematical modelling can be more easily transferred to the actual signals,and have a bearing fault identification accuracy of 99.73%in the unlabeled data scenario.This shows that mathematical modelling has greater potential to solve the problem of insufficient fault samples in bearing fault diagnosis,and may be a key technique for building a bridge between real industrial systems and artificial intelligence.

bearing fault datamathematical modelingLS-DYNA finite element simulationsubdomain adaptationresidual network(ResNet)modeltransfer learning ability

韩洁、苏小平、康正阳

展开 >

南京工业大学机械与动力工程学院,江苏南京 211800

轴承故障数据 数学建模 LS-DYNA有限元仿真 子领域自适应 残差神经网络(ResNet)模型 迁移学习能力

江苏省高等学校自然科学基金资助项目

19KJB460005

2024

机电工程
浙江大学 浙江省机电集团有限公司

机电工程

CSTPCD北大核心
影响因子:0.785
ISSN:1001-4551
年,卷(期):2024.41(1)
  • 19