首页|基于MOBWO-MCKD的风机滚动轴承故障特征提取方法

基于MOBWO-MCKD的风机滚动轴承故障特征提取方法

扫码查看
针对风力发电机轴承振动信号受强背景噪声及其他设备激励源影响,导致早期微弱故障特征不易提取这一问题,提出了一种基于多目标白鲸优化算法(MOBWO)优化的最大相关峰度反卷积(MCKD)风力发电机轴承故障特征提取方法.首先,采用MOBWO强大的全局及局部搜索能力优化了 MCKD关键参数,获取了最佳参数组合;其次,利用优化后的MCKD对原始信号进行了解卷积运算,消除了背景噪声及其他设备激励源的影响,突出了轴承周期性脉冲信号;然后对解卷积信号进行了包络谱分析,提取了轴承故障特征频率,并将其与理论计算故障特征频率值进行了诊断结果对比;最后,采用实际工程中采集到的风力发电机轴承内圈和外圈的故障数据,对MOBWO-MCKD方法的有效性进行了试验验证.研究结果表明:基于MOBWO-MCKD的故障特征提取方法能够有效地消除背景噪声及其他设备激励源的干扰;由内圈信号包络谱可得到的内圈故障频率为fR=125.87 Hz、2fIR=251.74 Hz;由外圈信号包络谱可得到的外圈故障频率为fOR=84.47Hz、2fOR=168.94Hz、3fOR=253.41 Hz.该特征提取方法可以为实际工程风力发电机轴承早期微弱故障特征提取研究提供一定的参考.
Fault feature extraction of wind turbine rolling bearing based on MOBWO-MCKD
Aiming at the problem that the vibration signal of wind turbine bearings affected by strong background noise and other equipment excitation sources leaded to the difficulty of feature extraction for early bearing weak fault features,a wind turbine bearing fault diagnosis method based on maximum correlation kurtosis deconvolution(MCKD),optimized by multi-objective beluga whale optimization(MOBWO)algorithm was proposed.Firstly,based on the powerful global and local search capabilities of MOBWO,the key parameters of MCKD were optimized,and the optimal parameter combination of MOBWO was obtained.Secondly,the optimized MCKD was employed to process the original signal by deconvolution operation for eliminating the influence of background noise and other equipment excitation sources and highlighting the bearing periodic pulse signal.Then,the envelope spectrum method was used to process the deconvolution signal to perform the extraction of bearing fault characteristic frequency,and the obtained fault characteristic frequency values were compared with the theoretical calculation values for diagnosis.Finally,in order to validate the effectiveness of MOBWO-MCKD,the experiments were conducted on the actual collected inner and outer ring fault data of wind turbine bearings.The results show that the fault feature extraction method based on MOBWO-MCKD can effectively eliminate the background noise and other excitation source interference of the early bearing weak fault features.The inner ring signal envelope spectrum shows the inner ring failure frequency fIR=125.87 Hz and 2fIR=251.74 Hz.The envelope spectrum of the outer ring signal can be seen as the outer ring failure frequency that fOR=84.47 Hz,2fOR=168.94 Hz,3fOR=253.41 Hz,which has a certain application value for the extraction of early weak fault characteristics of wind turbine bearings in practical engineering.

fan bearingmulti-objective beluga whale optimization(MOBWO)maximum correlated kurtosis deconvolution(MCKD)rolling bearing inner ringbearing outer ringenvelope analysis

霍忠堂、高建松、张丁丁

展开 >

邯郸学院机电学院,河北邯郸 056000

风机轴承 多目标白鲸优化算法 最大相关峰度反卷积 滚动轴承内圈 轴承外圈 包络分析

河北省教育厅科学技术研究项目

QN2022185

2024

机电工程
浙江大学 浙江省机电集团有限公司

机电工程

CSTPCD北大核心
影响因子:0.785
ISSN:1001-4551
年,卷(期):2024.41(1)
  • 19