首页|基于LSTM-Adam的矿井提升机故障预警模型

基于LSTM-Adam的矿井提升机故障预警模型

扫码查看
针对不同作业环境下提升机特征参数的独特性难以充分贴合和故障预警难度大等问题,提出了一种基于长短期记忆神经网络(LSTM)和适应性矩估计算法(Adam)的矿井提升机故障预警模型.首先,对矿井提升机的工作原理和常见故障表现形式进行了分析,以LSTM神经网络为基础,建立了提升机特征参数预测模型,并结合Adam优化算法,对预测模型进行了训练和优化;然后,采用某矿提升机实际运行数据对所搭建的预测模型性能进行了验证;采用滑动加权均值法对预测残差进行了分析,得到了多个关键特征参数的合理预警阈值,并建立了提升机故障预警模型;最后,以提升机的制动系统故障为例,采用故障模拟实验对提升机故障预警模型的有效性进行了验证.研究结果表明:当预测模型的学习率为0.015时,其训练效果最优,预测模型的损失率可达到0.12%,且参数变化趋势能够得到更好的拟合;采用基于LSTM-Adam的矿井提升机预警模型可以对参数变化趋势进行准确预测,利用预测残差分析结果可以对提升机故障进行精确预警.
A fault early warning model of mine hoist based on LSTM-Adam
Aiming at the problems such as the difficulty of fully fitting the characteristic parameters of hoist in different working environments and the difficulty of fault warning,a fault warning model of mine hoist based on the integration of long-short term memory neural network(long-short term memory,LSTM)and adaptive moment estimation algorithm(adaptive moment estimation,Adam)was proposed.Firstly,by analyzing the working principle and common fault manifestations of mine hoists,a prediction model of hoist characteristic parameters was established based on LSTM neural network,and the prediction model was trained and optimized by combining Adam optimization algorithm.Then,the actual operation data of a mine hoist was used to verify the performance of the built predictive model.The sliding weighted mean method was used to analyze the forecast residual,and the reasonable warning thresholds of several key feature parameters were obtained,and the elevator fault warning model was established.Finally,taking the brake system failure as an example,the effectiveness of the hoist fault warning model was verified by fault simulation experiments.The research results show that when the learning rate of the model is 0.015,the training effect is the best,the loss rate of the predicted model can reach 0.12%,and the parameter change trend can be better fitted.The mine hoist early warning model based on LSTM-Adam can accurately predict the trend of parameter change;combining with the prediction residual analysis results for fault early warning,it can achieve accurate early warning of hoist failure.

hoisting machinerymine hoistfault early warninglong-short term memory(LSTM)adaptive moment estimation(Adam)deep learning

郭星燃、李娟莉、苗栋、李博

展开 >

太原理工大学机械与运载工程学院,山西太原 030024

煤矿综采装备山西省重点实验室,山西太原 030024

起重机械 矿井提升机 故障预警 长短期记忆神经网络 适应性矩估计算法 深度学习

山西省基础研究计划面上项目山西省回国留学人员科研资助项目

2023030212110442020-034

2024

机电工程
浙江大学 浙江省机电集团有限公司

机电工程

CSTPCD北大核心
影响因子:0.785
ISSN:1001-4551
年,卷(期):2024.41(1)
  • 19