首页|基于改进多目标粒子群的大型设备群检测策略优化方法

基于改进多目标粒子群的大型设备群检测策略优化方法

扫码查看
在大型履带起重机群(大型设备群)检验检测中,存在检测工期紧、检测质量和人员安全要求高、经济效益最大化等多目标约束下的最优检测策略制定问题,为此,提出了一种基于改进多目标粒子群的大型设备群检测策略优化方法(MOPSO).首先,利用变异算子对传统的多目标粒子群算法优化方法进行了改进;然后,根据大型设备群检测项目的实际需求构建了检测工期、检测成本、检测质量与安全的多目标优化模型,并确定了各子目标的约束条件;最后,将该优化算法和构建的模型应用于大型履带起重机群的检测项目中,对该方法的有效性进行了验证.研究结果表明:与传统检测策略相比,在保证质量和安全的前提下,利用该方法得到最优的检测策略,其检测周期仅需3/4,检测单位成本节省了14%,受检单位成本节约了32.8%,极大地提升了检测效率,降低了企业和检验单位人力、经济和时间成本.因此,该方法具有良好的实用性和推广应用价值.
Detection strategy optimization of large equipment group based on improved MOPSO algorithm
Aiming at the problem that the optimal detection strategy under multi-objective constraints such as tight testing schedules,high requirements for testing quality and personnel safety,and maximization of economic benefits in the inspection and testing of large crawler crane group(large equipment groups),an optimization method based on improved multi-objective particle swarm optimization(MOPSO)was proposed.Firstly,the traditional multi-objective particle swarm optimization algorithm was improved using mutation operators.Then,a multi-objective optimization model for testing duration,testing cost,testing quality,and safety was constructed based on the actual needs of large-scale equipment group testing projects,and the constraints of each sub objective were determined.Finally,the optimization algorithm and constructed model were applied to the detection project of a large crawler crane group to verify the effectiveness of the method.The research results show that the optimal detection strategy obtained using the method,comparing with traditional detection strategies,only requires 3/4 of the detection time while ensuring quality and safety.Meanwhile,the testing eunitcoste and the inspected eunitcoste can respectively save 14%and 32.8%.It greatly improved the detection efficiency,reduces the human,economic,and time costs of enterprises and inspection units,and the method has good practicality and promotion application value.

equipment grouplarge crawler cranemulti-objective particle swarm optimization(MOPSO)detection strategy optimizationparticle swarmoptimization algorithm

张继旺、刘锁、龚庶、刘悦、丁克勤

展开 >

中国特种设备检测研究院,北京 100029

海洋石油工程股份有限公司 天津建造分公司,天津 300461

设备群 大型履带起重机 多目标粒子群优化 检测策略优化 粒子群 优化算法

内蒙古自治区科技计划中国特种设备检测研究院青年基金

2022YFSH00192021青年16

2024

机电工程
浙江大学 浙江省机电集团有限公司

机电工程

CSTPCD北大核心
影响因子:0.785
ISSN:1001-4551
年,卷(期):2024.41(3)
  • 21