首页|某型复杂工程机械变速箱体复合工艺约束机加工线平衡研究

某型复杂工程机械变速箱体复合工艺约束机加工线平衡研究

扫码查看
为解决机加工生产线平衡问题所包含的加工任务刀具需求、机床类型需求、加工方位约束、"紧密"型和"或"型约束等复杂条件,建立了机加工生产线平衡数学模型,并采用含多重筛选机制的粒子群算法进行了求解.首先,建立了满足此复杂实际约束条件的机加工生产线平衡问题数学模型;然后,采用粒子的位置坐标作为粒子群搜索的权重信息,进行了加工任务、集中任务的选取,并设计了多重筛选机制构造启发式任务集生成规则;采用此规则对待分配加工任务进行了多重筛选,以得到可供直接分配的加工任务集合,粒子群算法(PSO)从此集合中依次选取了加工任务,构成了完整的解,并形成了具体的任务分配方案;最后,为提高程序的实用性和可视性,设计了加工任务的甘特图生成模块,通过对某复杂工程机械变速箱体零件的实际案例研究,将简化后的任务信息代入算法进行了求解.研究结果表明:该方法实现了多组平衡率高于90%的优化结果,在节拍时间为1120s时,得到94.66%的较高平衡率,排产方案表格内容与甘特图显示一致;算法推演结果满足设定的多种复合约束条件,通过与人工排产对比说明了该算法的有效性并具有较好的经济性、实用性;对柔性生产案例进行探讨,证明该算法运算结果具备一定的生产柔性.
Machining line balance of variable speed box of a complex construction machinery considering complex process constraints
To solve the balance problem of machining production,complex conditions such as machining task tool requirements,machine tool type requirements,machining orientation constraints,"tight"type and"or"type constraints are included.A mathematical model of this complex problem was constructed,and a particle swarm optimization algorithm with multiple screening mechanism was proposed to solve it.Firstly,a mathematical model of the balance problem of machining production line was established which satisfied the complex practical constraints.Then,the position coordinates of particles were used as the weight information of particle swarm search to select the tasks in the processing task set,and a multi-screening mechanism was designed to construct the heuristic task set generation rule.This heuristic task set generation rule was used to get a set of processing tasks that could be directly assigned and processed.The processing tasks were selected successively by particle swarm optimization(PSO)from the directly selectable set to form a complete solution and a specific task assignment scheme.Finally,in order to improve the practicability and visibility of the program,a Gantt chart generating module for machining task was designed.Through the actual case study of a complex construction machinery variable speed box parts,the simplified task information was substituted into the algorithm to solve the optimization results.The research results indicate that this method has achieved optimization results with multiple balance rates above 90%.When the beat time is 1 120 s,the balance rate is 94.66%,and the content of the production scheduling table is consistent with the Gantt chart.The proposed algorithm satisfies the complex constraints,and the comparison with manual scheduling shows that the proposed algorithm is effective and has good economy and practicability.Through the discussion of flexible production cases,the results of this algorithm have certain production flexibility.

machining technologyparticle swarm optimization(PSO)line balancing mathematical modelbox partsconstraint relation matrixheuristic alternative task set generation rules

金初云、胡俊逸、陈勇、王一鸿

展开 >

浙江交通职业技术学院 轨道交通学院,浙江 杭州 311112

西南交通大学 机械工程学院,四川 成都 610031

浙江工业大学 机械工程学院,浙江 杭州 310023

机械加工工艺 粒子群算法 生产线平衡数学模型 箱体类零件 约束关系矩阵 启发式备选任务集生成规则

国家自然科学基金资助项目浙江省公益基金资助项目四川省科技计划项目四川省科技计划项目浙江省2022年度访工项目

52375268LGG22G0100022022YFG02452022YFG0241FG2022009

2024

机电工程
浙江大学 浙江省机电集团有限公司

机电工程

CSTPCD北大核心
影响因子:0.785
ISSN:1001-4551
年,卷(期):2024.41(4)
  • 21