首页|基于YOLOv5s改进模型的堆叠螺栓抓取研究

基于YOLOv5s改进模型的堆叠螺栓抓取研究

扫码查看
在当前工业的螺栓生产过程中,堆叠螺栓的分拣工作依然需要人工完成,不仅工作效率低,而且会导致大量人力资源的浪费.针对这一问题,对 YOLOv5 网络模型进行了改进,提出了 SE_YOLOv5 网络模型.首先,在原网络的 Neck部分删除了 P′1 特征层,减小了网络对浅层信息的提取,在不影响对大尺寸目标检测的前提下,提高了网络检测的实时性;然后,改进了 Backbone模块,通过添加压缩与激励(SE)注意力机制,使网络更高效地聚焦于图像中的重要部分,增强了网络对堆叠螺栓检测的准确性;最后,提出了检测框重叠最小法,减少了抓取时夹爪与非目标螺栓的碰撞,并对螺栓检测框进行了抓取点位姿优化,提高了抓取的成功率.研究结果表明:SE_YOLOv5 网络对堆叠螺栓检测的平均精度为 86.5%,平均速度为 13.02 FPS;相比于原 YOLOv5s 网络模型,SE_YOLOv5网络在检测精度上提升了 1.2%,在检测速度上提升了 2.71 FPS;相比于其他检测模型,SE_YOLOv5 也具有更高的检测精度和检测速度.抓取结果证明,该模型能用于有效地指导机械臂进行螺栓抓取操作.
Stacked bolts grasping based on YOLOv5s improved model
In the current industrial bolt production process,the sorting of stacked bolts still needs to be completed manually,which not only has low work efficiency,but also leads to the waste of a large number of human resources.Aiming at this problem,the YOLOv5 network model was improved,and a SE_YOLOv5 network model was proposed.Firstly,the P′1 feature layer was deleted in the Neck part of the original network,which reduced the extraction of shallow information by the network,and improved the real-time performance of network detection without affecting the detection of large-size objects;Then,the Backbone module was improved to make the network focus on the important parts of the image more efficiently by adding the squeeze-and-excitation(SE)attention mechanism,and the accuracy of the network's detection of stacked bolts was enhanced;Finally,the minimum overlap method of the detection frame was proposed to reduce the collision between the gripper and the non-target bolt during grasping,and the grasping point pose of the bolt detection frame was optimized to improve the success rate of grasping.The research results show that the average accuracy of the SE_YOLOv5 network is 86.5%and the average detection speed is 13.02 FPS.Compared with the original YOLOv5s network model,the SE_YOLOv5 network has improved the detection accuracy by1.2%and the detection speed by 2.71 FPS,and the SE_YOLOv5 also has higher detection accuracy and detection speed than other detection models.The grasping experiment shows that the model can effectively guide the robotic arm to carry out bolt grasping operation.

sorting of stacked boltsSE_YOLOv5 network modelsqueeze-and-excitation(SE)attention mechanismminimal overlap methodgrasping operationspoint-taking attitude optimization

李凤洋、邱益、陈江义、杨云峰、窦晓亮、郝树涛

展开 >

郑州大学 机械与动力工程学院,河南 郑州 450001

青海黄河上游水电开发有限责任公司 工程建设分公司,青海 西宁 810000

堆叠螺栓分拣 SE_YOLOv5网络模型 压缩与激励注意力机制 重叠最小法 抓取操作 抓取点位姿优化

河南省科技研发计划联合基金(产业类)资助项目

225101610073

2024

机电工程
浙江大学 浙江省机电集团有限公司

机电工程

CSTPCD北大核心
影响因子:0.785
ISSN:1001-4551
年,卷(期):2024.41(8)