Abstract
During the 36th Chinese National Antarctic Research Expedition,aerosol samples were gathered from the Ross Sea in Antarctic to assess the climatic impact of the Australian fires that occurred in 2019-2020.The chemical compositions,including levoglucosan(Lev)and its isomers,galactosan(Gan)and mannosan(Man),were analyzed.Principal component analysis helped identify the potential sources of these chemical components.By combining backward trajectories with the ratios of CLev/CMan and CMan/CGan,it was further inferred that Australia might be the potential source region for biomass burning.The radiative forcing resulting from biomass burning was evaluated using the Santa Barbara DISORT Atmospheric Radiative Transfer(SBDART)model,which revealed that black carbon emitted from biomass burning could slightly warm the atmosphere(+0.52 W·m-2)while causing slightly cooling at the surface(-0.73 W·m-2)and the top of the atmosphere(-0.22 W·m-2)over the Ross Sea.