首页|北极多源海冰厚度数据产品的定量分析与综合评估

北极多源海冰厚度数据产品的定量分析与综合评估

扫码查看
北极海冰厚度的研究对探究全球气候变化和开辟北极航道具有重要意义。虽然卫星遥感和数值模拟技术已广泛应用于海冰厚度的研究,但相比于海冰密集度的研究,不同海冰厚度数据产品在时空上存在着较大差异。因此,本文为了客观定量地衡量不同海冰厚度数据产品的准确性和适用性,提出 1 种海冰厚度数据产品的综合质量评估框架。该框架提取了 2010-2020 年不同海冰厚度产品的数字统计特征、局地空间分布和时间变化规律,构建 9 类评估指标,通过与实测数据的对比分析,实现海冰厚度产品的多维度定量评估。结果表明,(1)CryoSat-2 和SMOS(CS2SMOS)产品在统计特征相关性、空间结构相似度、年际变化偏差、逐月变化相关性和逐月变化偏差等 5 个指标中表现突出;(2)PIOMAS 产品最能反映冬半年海冰厚度随时间的变化特征和最优的年际变化相关性;(3)CPOM产品在特征统计偏差、空间分布相关性和空间分布偏差等 3 个指标表现最优。以上研究结果可用于海冰厚度数据产品融合,可为不同海冰厚度数据产品在不同时空进行赋权,因而提高海冰厚度数据产品融合的客观性和可靠性。
Quantitative analysis and comprehensive evaluation of multi-source Arctic sea ice thickness data products
The study of Arctic sea ice thickness is of significant importance for understanding global climate change and exploring Arctic shipping routes.While satellite remote sensing and numerical simulation tech-niques have been widely employed in sea ice thickness studies,there are significant spatiotemporal discrep-ancies among various sea ice thickness data products,unlike the research on sea ice concentration.Therefore,this paper proposes a comprehensive quality assessment framework for sea ice thickness data products to objectively and quantitatively evaluate their accuracy and applicability.The framework extracts digital sta-tistical features,local spatial distributions,and temporal variation pattern of different sea ice thickness products from 2010 to 2020,constructing nine evaluation indicators.Through comparative analysis with observed data,multidimensional quantitative evaluation of sea ice thickness products is achieved.The re-sults indicate that:(1)CryoSat-2 and SMOS(CS2SMOS)products excel in five indicators,including statis-tical feature correlation,spatial structure similarity,interannual variation deviation,monthly change correla-tion,and monthly change deviation;(2)PIOMAS product best reflects the temporal characteristics of sea ice thickness during the winter half-year and exhibits optimal interannual variation correlation;(3)CPOM product performs best in three indicators,including feature statistical deviation,spatial distribution correla-tion,and spatial distribution deviation.The research findings can be used for the fusion of sea ice thickness data products,enabling the objective and reliable weighting of different sea ice thickness data products in different spatiotemporal contexts,thereby enhancing the objectivity and reliability of sea ice thickness data product fusion.

multi-source datasea ice thicknessassessmentArctic

李彤彤、汪杨骏、吴鸿乾、刘科峰、陈希、李明、李洪臣

展开 >

江苏海洋大学海洋技术与测绘学院,江苏 连云港 222000

国防科技大学前沿交叉学科学院,江苏 南京 410000

国防科技大学系统工程学院,江苏 南京 410000

国防科技大学气象海洋学院,江苏 南京 410000

展开 >

多源数据 海冰厚度 评估 北极

2024

极地研究
国家海洋局极地考察办公室 中国极地研究中心

极地研究

CSTPCD北大核心
影响因子:0.638
ISSN:1007-7073
年,卷(期):2024.36(4)