首页|人工智能"图生图"式景观平面生成技术的适用性评价与反思

人工智能"图生图"式景观平面生成技术的适用性评价与反思

扫码查看
人工智能(AI)图像生成技术正在改变景观设计中的传统工作模式,其中,"图生图"式生成对抗网络(generative adversarial network,GAN)技术具备辅助方案设计的潜能,因此面向用户端对其展开技术适用性评价研究对于优化工具选择、提升设计效率尤为重要.本研究旨在借助图像分析和用户调查方法,评估GAN生成方法生成结果的质量、与设计工作对接的有效性,以及景观设计师对图像生成结果的接受度.研究以Pix2Pix-BicycleGAN工作流中布局生成与平面渲染两项任务为评价对象,建立了基于地块数量的绝对/欧式距离、直方图距离、结构相似性指数等图像分析指标;针对GAN生成结果的视觉真实性和色彩肌理偏好开展了两项在线用户问卷调查.结果显示,GAN生成布局与真实布局相似性高,GAN渲染平面能够满足概念方案呈现要求、用户接受度好.最后,本文探讨了GAN生成方法的内在合理性及其在行业伦理及数据偏见方面的局限性,反思现阶段连接AI辅助设计与循证设计之间的技术空缺.
Applicability Evaluation and Reflection on Artificial Intelligence-based"Image to Image"Generation of Landscape Architecture Masterplans
Artificial intelligence(AI)image generation is revolutionizing traditional workflow in landscape architecture industry,among which the"image-to-image"generative adversarial network(GAN)exhibits potential to facilitate concept design.Therefore,it underscores the importance of applicability evaluation from the perspective of users.This research aims to evaluate the quality of the GAN-generated results,their effectiveness in integrating with design workflows,and the landscape architects'acceptance of the results through image analysis and user survey.The evaluation focuses on layout generation and masterplan rendering within the Pix2Pix-BicycleGAN workflow.The evaluation metrics of image analysis including block number absolute/Euclidean distance,histogram distance,and structural similarity index measure,were employed.Additionally,the online survey with two questionnaires was conducted to evaluate the visual realism and preference for color and texture of the GAN-generated results.The findings indicate that the GAN-generated layout exhibits a high similarity to the human-designed layout,and the GAN-rendered masterplans fulfill the criteria for concept design and garner positive user acceptance.Conclusively,this study delves into the intrinsic rationality of the GAN generation methods and limitations in professional ethics and data bias,reflecting on the gaps between current AI-assisted design methods and evidence-based design.

Landscape ArchitectureImage GenerationGenerative Adversarial NetworkArtificial Intelligence-Assisted DesignApplicability EvaluationLandscape Masterplan

周怀宇、向双斌、高雨婷

展开 >

湖南大学建筑与规划学院建筑系,长沙 410082

清华大学建筑学院景观学系,北京 100084

北京市市政工程设计研究总院有限公司建筑院景观室,北京 100088

景观设计学 图像生成 生成对抗网络 人工智能辅助设计 适用性评价 景观平面

2024

景观设计学(中英文)

景观设计学(中英文)

ISSN:2096-336X
年,卷(期):2024.12(2)