首页|Yolov7-pose识别运动员姿态时关键点异常的消除方法

Yolov7-pose识别运动员姿态时关键点异常的消除方法

扫码查看
本研究首先构建了深度聚合网络(deep layer aggregation,DLA),用于替换Yolov7-pose算法中原有的特征融合网络,增强了特征的表达;其次,将高效聚合网络(efficient layer aggregation Net,ELAN)和尺度感知注意力网络(scale-aware attention Net,SAAN)融合在一起,引入到 Yolov7-pose算法中;然后,引入尺度因子到Yolov7-pose算法的损失函数中,并通过实验确定尺度因子最佳值.实验结果表明,经过本法改进的方法识别篮球比赛视频流中的多名运动员姿态时,不再出现关键点异常现象,姿态识别的精度达到95%以上,运行效率达到24 FPS以上,综合性能显著优于原始Yolov7-pose算法等算法.
METHOD FOR ELIMINATING ABNORMAL KEY POINTS IN ATHLETE POSTURE RECOGNITION USING YOLOV7-POSE
This paper proposes several enhancements to the original Yolov7-pose algorithm:firstly,constructing a deep layer aggregation network(DLA)to replace the existing feature fusion network and enhance feature expression;secondly,fusing ELAN(efficient layer aggregation net)and SAAN(scale-aware attention net)into the Yolov7-pose algorithm;thirdly,introducing a scale factor into the loss function of the Yolov7-pose algorithm and determining its optimal value through experiments.Experimental results demonstrate that these improvements eliminate key point anomalies in posture recognition,achieving an accuracy rate exceeding 95%and operating efficiency surpassing 24FPS.The comprehensive performance surpasses that of the original Yolov7-pose algorithm and other algorithms significantly.

basketball gameposture estimationdeep aggregation networkattention mechanism

黄建浩、钟映春、张钢、赖志飞、杨铠康、张永恒

展开 >

广东工业大学自动化学院,广东,广州 510006

广州市番禺职业技术学院,广东,广州 511483

深圳云动家体育科技有限公司,广东,深圳 518115

篮球比赛 姿态检测 深层聚合网络 注意力机制

国家自然科学基金项目

61975248

2024

井冈山大学学报(自然科学版)
井岗山大学

井冈山大学学报(自然科学版)

影响因子:0.298
ISSN:1674-8085
年,卷(期):2024.45(3)