首页|仙人掌图和卡氏积图的连通包数

仙人掌图和卡氏积图的连通包数

扫码查看
测地线的概念起源于几何学、拓扑学及函数分析中的凸集理论,它在选址问题、网络设计及控制理论等方面有重要意义.在图论中定义了凸性后,测地线问题及与之相关的测地数问题成为揭示图的结构性质的一个重要指标及参数.图的连通包数是定义在图中测地线上的一个参数.针对计算图的连通包数问题,本研究用组合分析法确定了仙人掌图Cn·Cn及卡氏积图Pm×K2、Pm×C3、P2×Cn的连通包数,其中m≥2,n≥3,Pm是长度为m-1的路,Cn是长度为n的圈.
CONNECTED HULL NUMBERS OF CACTUS GRAPHS AND CARTESIAN PRODUCT GRAPHS
The concept of geodesic originated from convex set theory in geometry,topology,and function analysis.It has important significance in location selection problems,network design,and control theory.After defining convexity in graph theory,geodesic problems and related geodesic number problems become important indicators and parameters for revealing the structural properties of graphs.The connected hull number of a graph is a parameter defined on the geodesics in the graph.For the question of calculating the connected hull number in a graph,this paper determines the connected hull numbers of the cactus graph Cn·Cn,Cartesian product graphs Pm × K2、Pm × C3、P2 × Cn,where m ≥ 2,n≥3,Pm is the path of length m-1,and Cn is the cycle of length n.

convex setconnected hull setconnected hull numbercactus graphcartesian product

贾倩琼、陈春霖、秦文文、马儇龙

展开 >

西安石油大学理学院,陕西,西安 710065

凸集 连通包集 连通包数 仙人掌图 卡氏积

2024

井冈山大学学报(自然科学版)
井岗山大学

井冈山大学学报(自然科学版)

影响因子:0.298
ISSN:1674-8085
年,卷(期):2024.45(4)