首页|一类具有陡峭位势临界的分数阶Schr?dinger-Poisson 系统的基态解

一类具有陡峭位势临界的分数阶Schr?dinger-Poisson 系统的基态解

扫码查看
研究了一类具有陡峭位势的临界分数阶Schrödinger-Poisson系统.由于能量泛函的最小值大于零,这使得变分法难以运用和实现,为克服这个困难,构造了 Pohozaev型等式和Nehari-Pohozaev-Palais-Smale序列.对非线性项f和参数作适当的假设,通过变分方法,得到了基态解的存在性.
GROUND STATE SOLUTIONS FOR A CLASS OF CRITICAL FRACTIONAL SCHR?DINGER-POISSON SYSTEM WITH STEEP POTENTIAL WELL
In this paper we study the ground state solutions for a class of critical fractional Schrödinger-Poisson system.Since the minimum value of the energy functional is greater than zero,which can not be easily obtained by variational method,thus,the Pohozaev type identity and the Nehari-Pohozaev-Palais-Smale sequence are constructed to overcome this difficulty.Under suitable assumptions for nonlinear terms f and parameters,by the variational methods,the existence of the ground states solutions is obtained.

ground state solutionsvariational methodscritical growthsteep potential wellfractional Schrödinger-Poisson system

陈征艳、张家锋

展开 >

贵州民族大学数据科学与信息工程学院,贵州,贵阳 550025

基态解 变分方法 临界增长 陡峭位势 分数阶Schrödinger-Poisson系统

2024

井冈山大学学报(自然科学版)
井岗山大学

井冈山大学学报(自然科学版)

影响因子:0.298
ISSN:1674-8085
年,卷(期):2024.45(6)