首页|基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测

基于EMD分量与小波包能量熵的轧辊磨削颤振在线预测

扫码查看
针对轧辊磨削颤振时的时频域单一处理方法存在部分特征丢失的问题,提出了时频域相结合的方法对信号进行特征处理,并利用智能算法实现轧辊磨削颤振的在线预测.首先,利用经验模态分解(empirical mode decomposition,EMD)方法对振动传感器信号进行分解获得各固有模态函数(intrinsic mode function,IMF),剔除"虚假分量"后计算表征轧辊磨削颤振的时域特征.然后,利用小波包能量熵对声发射传感器信号求解频率段节点能量熵值,获得表征轧辊磨削颤振的频域特征.最后,将上述时频域特征降维后代入智能算法模型实现对轧辊磨削加工的在线预测.结果表明:LV-SVM模型的磨削颤振分类平均准确率达92.75%,模型平均响应时间为 0.776 5 s;验证了时频域特性的EMD和小波包能量熵方法的LV-SVM在线预测轧辊磨削颤振的有效性.
On line prediction of roll grinding chatter based on EMD component and wavelet packet energy entropy
To address the issue of partial feature loss in the single processing method within the time-frequency do-main for roll grinding chatter,a combined time-frequency domain method is proposed to process signal feature.An in-telligent algorithm is used to achieve online prediction of roll grinding chatter.Firstly,the empirical mode decomposi-tion(EMD)method is utilized to decompose the vibration sensor signals,extrating the intrinsic mode function(IMF)while removing"spurious components"to calculate time domain characteristics associated with roll grinding chatter.Then,wavelet packet energy entropy is used to solve the frequency band node energy entropy values of acoustic emis-sion sensor signals,obtaining frequency domain features characterizing the roll grinding chatter.Finally,the time-fre-quency domain features after dimension reduction is substituted into the intelligent algorithm model for online predic-tion of the roller grinding process.The results show that the the LV-SVM model achieves an average classification ac-curacy of 92.75%,with an average response time of 0.776 5 s.This verifies the validity of EMD and LV-SVM based on wavelet packet energy entropy in the time-frequency domain for online prediction of roller grinding chatter.

roll grinding chatterEMD decompositionintrinsic mode function(IMF)wavelet energy entropyleast squares support vector machine(LS-SVM)

朱欢欢、迟玉伦、张梦梦、熊力、应晓昂

展开 >

上海市高级技工学校 制造工程系, 上海 200437

上海工程技术大学 高职学院, 上海 200437

上海理工大学 机械工程学院, 上海 200093

轧辊磨削颤振 EMD分解 固有模态函数 小波包能量熵 最小二乘支持向量机

2024

金刚石与磨料磨具工程
郑州磨料磨具磨削研究所

金刚石与磨料磨具工程

CSTPCD北大核心
影响因子:0.354
ISSN:1006-852X
年,卷(期):2024.44(1)
  • 22