首页|单像素成像中哈达玛基掩模优化排序前沿进展

单像素成像中哈达玛基掩模优化排序前沿进展

扫码查看
单像素成像使用一系列空间光调制掩模对目标场景进行单像素亚采样,再根据掩模与测量值之间的关联重构出物体图像。这种间接获取图像的方式之所以能保证重建质量,除了有重构算法的功劳,更关键的是测量掩模的构造。随着压缩感知理论的引入,随机掩模进入人们视野,但它让测量变得盲目,缺乏针对性,而且这种掩模不便于存储和计算,极大限制了空间像素分辨率。哈达玛基掩模因其结构化特征使快速计算成为可能,且方便存储和提取,近年来得到广泛关注,已发展出诸多哈达玛基掩模优化排序方法,这些方法已被证明能大幅降低采样率。本综述系统地梳理了这类方法的设计框架和前沿进展,展望了确定性掩模构造的未来发展趋势,可为后续的研究工作提供有益的借鉴和指导。
Frontier Advances in Optimized Ordering of the Hadamard Basis Patterns Used in Single-Pixel Imaging
Single-pixel imaging applies a series of spatial light modulated patterns to subsample the target scene with the assistance of a single-pixel detector,and subsequently reconstructs the object image according to the correlation between patterns and measurements.This indirect image acquisition method ensures reconstruction quality because of the reconstruction algorithm applied,and more crucially,the measurement mask construction.With the introduction of compressed sensing theory,random patterns emerged,but making the measurements blind and lacking specificity.Such patterns fail to facilitate storage and calculation,and thus significantly limit spatial pixel resolution.Recently,Hadamard basis patterns received widespread attention owing to their structured features that enable fast computation and facilitate storage and extraction.Considering this,numerous optimized ordering methods for the Hadamard basis patterns were developed,and proven to significantly reduce the sampling ratios.This study systematically reviews the design frameworks and frontier advances of these methods,and summarizes the future development trends of deterministic pattern construction.Finally,this contribution provides a beneficial reference point including guidance for subsequent research in this specific field.

computational imagingimage detection systemimage formation theory

俞文凯、曹冲、杨颖、王硕飞

展开 >

北京理工大学物理学院,北京 100081

北京理工大学先进光电量子结构设计与测量教育部重点实验室,北京 100081

计算成像 图像检测系统 成像理论

北京市自然科学基金面上项目

4222016

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(4)
  • 76