首页|基于径向基神经网络的相位畸变补偿算法(特邀)

基于径向基神经网络的相位畸变补偿算法(特邀)

扫码查看
数字全息显微镜(DHM)可以对生物样本的复杂波前进行数值重建,但是物体波前存在二次相位畸变和高阶像差,使得成像物体存在一定的相位像差。基于此,提出一种基于径向基神经网络(RBF)的相位畸变补偿算法。使用RBF网络构建非线性函数,最小化损失函数来估算物体的实际相位,损失函数考虑了全息面和RBF网络的输出。在仿真中以原模型为基准计算全局的均方误差,所提算法的均方误差为 0。0374,主成分分析法(PCA)的为 0。0470,频谱质心法(SCM)的为0。3303。搭建DHM系统用于HL60细胞的成像幅度和相位对比度观察,结果显示,所提算法能够更好地消除载波频率和相位畸变。所提算法无需了解光学参数,且可以通过调整采样点数量控制计算时间和插值精度,在弱散射物体或微纳结构三维形态测量中具有潜在的应用前景。
Phase Compensation Algorithm for Off-Axis Digital Holography Based on a Radial Basis Function Neural Network(Invited)
Digital holographic microscopy allows numerical reconstruction of the complex wavefront of biological samples,but the wavefront of the object has quadratic phase distortion and high-order aberration,which gives the imaging object a certain phase aberration.In this study,a phase distortion compensation algorithm based on a radial basis function(RBF)neural network is proposed.The RBF network is used as the interpolation function to estimate the actual phase of the object by minimizing the loss function.The loss function takes into account the output of the holographic surface and RBF network.In the simulation,the global mean square error is calculated based on the original model.The results using the RBF network,principal component analysis,and the spectrum centroid method are 0.0374,0.0470,and 0.3303,respectively.We set up a DHM system to observe the imaging amplitude and phase contrast of HL60 cells.The results show that the RBF method can better eliminate carrier frequency and phase distortion.The proposed method has the advantages of not requiring knowledge of the optical parameters and allowing adjustment of the number of sampling points to control the calculation time and interpolation accuracy.It has potential application prospects in the three-dimensional shape measurement of weak scattering objects or micro-nano structures.

digital holographyphase aberration compensationwavefront errorradial basis function neural network

史有洲、吴一辉、周文超

展开 >

中国科学院长春光学精密机械与物理研究所,吉林 长春 130033

中国科学院大学,北京 100049

数字全息 相位恢复 波前误差 径向基神经网络

国家自然科学基金面上项目中国科学院青年创新促进会会员项目佛山中国科学院产业技术研究院产业化创新团队项目

619741432020223ZK TD 202003

2024

激光与光电子学进展
中国科学院上海光学精密机械研究所

激光与光电子学进展

CSTPCD北大核心
影响因子:1.153
ISSN:1006-4125
年,卷(期):2024.61(4)
  • 26